These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 22955065

  • 1. Sparsity regularization in dynamic elastography.
    Honarvar M, Sahebjavaher RS, Salcudean SE, Rohling R.
    Phys Med Biol; 2012 Oct 07; 57(19):5909-27. PubMed ID: 22955065
    [Abstract] [Full Text] [Related]

  • 2. The ultrasound elastography inverse problem and the effective criteria.
    Aghajani A, Haghpanahi M, Nikazad T.
    Proc Inst Mech Eng H; 2013 Nov 07; 227(11):1203-12. PubMed ID: 23921546
    [Abstract] [Full Text] [Related]

  • 3. Shear modulus reconstruction in dynamic elastography: time harmonic case.
    Park E, Maniatty AM.
    Phys Med Biol; 2006 Aug 07; 51(15):3697-721. PubMed ID: 16861775
    [Abstract] [Full Text] [Related]

  • 4. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A, Salcudean S, Honarvar M, Sahebjavaher RS, Rohling R, Sinkus R.
    IEEE Trans Med Imaging; 2011 Aug 07; 30(8):1555-65. PubMed ID: 21813354
    [Abstract] [Full Text] [Related]

  • 5. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW, Barbone PE, Oberai AA, Morgan EF.
    J Biomech Eng; 2011 Jun 07; 133(6):061002. PubMed ID: 21744922
    [Abstract] [Full Text] [Related]

  • 6. Predicting target displacements using ultrasound elastography and finite element modeling.
    op den Buijs J, Hansen HH, Lopata RG, de Korte CL, Misra S.
    IEEE Trans Biomed Eng; 2011 Nov 07; 58(11):3143-55. PubMed ID: 21846601
    [Abstract] [Full Text] [Related]

  • 7. Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique.
    Arnold A, Reichling S, Bruhns OT, Mosler J.
    Phys Med Biol; 2010 Apr 07; 55(7):2035-56. PubMed ID: 20299732
    [Abstract] [Full Text] [Related]

  • 8. Tissue elasticity reconstruction using linear perturbation method.
    Kallel F, Bertrand M.
    IEEE Trans Med Imaging; 1996 Apr 07; 15(3):299-313. PubMed ID: 18215911
    [Abstract] [Full Text] [Related]

  • 9. A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
    Pan X, Liu K, Bai J, Luo J.
    Biomed Eng Online; 2014 Sep 07; 13():132. PubMed ID: 25194553
    [Abstract] [Full Text] [Related]

  • 10. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption.
    Arnold A, Bruhns OT, Mosler J.
    Phys Med Biol; 2011 Jul 21; 56(14):4239-65. PubMed ID: 21701052
    [Abstract] [Full Text] [Related]

  • 11. [The selection of Tikhonov regularization parameter in dynamic electrical impedance imaging].
    Peng Y, Mo Y.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec 21; 20(4):571-3. PubMed ID: 14716847
    [Abstract] [Full Text] [Related]

  • 12. Multifrequency inversion in magnetic resonance elastography.
    Papazoglou S, Hirsch S, Braun J, Sack I.
    Phys Med Biol; 2012 Apr 21; 57(8):2329-46. PubMed ID: 22460134
    [Abstract] [Full Text] [Related]

  • 13. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H, Salcudean SE, Rohling R, Ohayon J.
    Phys Med Biol; 2008 Nov 21; 53(22):6569-90. PubMed ID: 18978443
    [Abstract] [Full Text] [Related]

  • 14. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL, de Almeida ES, Donzelli PS.
    Crit Rev Biomed Eng; 1992 Nov 21; 20(3-4):279-313. PubMed ID: 1478094
    [Abstract] [Full Text] [Related]

  • 15. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE, Charleux F, Ho Ba Tho MC, Bensamoun SF.
    Comput Methods Biomech Biomed Engin; 2015 Nov 21; 18(5):485-91. PubMed ID: 23947476
    [Abstract] [Full Text] [Related]

  • 16. A Comparison of Finite Element-Based Inversion Algorithms, Local Frequency Estimation, and Direct Inversion Approach Used in MRE.
    Honarvar M, Sahebjavaher RS, Rohling R, Salcudean SE.
    IEEE Trans Med Imaging; 2017 Aug 21; 36(8):1686-1698. PubMed ID: 28333623
    [Abstract] [Full Text] [Related]

  • 17. Digital image elasto-tomography: combinatorial and hybrid optimization algorithms for shape-based elastic property reconstruction.
    Peters A, Chase JG, Van Houten EE.
    IEEE Trans Biomed Eng; 2008 Nov 21; 55(11):2575-83. PubMed ID: 18990627
    [Abstract] [Full Text] [Related]

  • 18. Estimating elasticity in heterogeneous phantoms using Digital Image Elasto-Tomography.
    Peters A, Chase JG, Van Houten EE.
    Med Biol Eng Comput; 2009 Jan 21; 47(1):67-76. PubMed ID: 18931869
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study.
    Ou JJ, Ong RE, Yankeelov TE, Miga MI.
    Phys Med Biol; 2008 Jan 07; 53(1):147-63. PubMed ID: 18182693
    [Abstract] [Full Text] [Related]

  • 20. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T, Osnes H, Sundnes J.
    Comput Methods Biomech Biomed Engin; 2005 Dec 07; 8(6):369-79. PubMed ID: 16393874
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.