These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
362 related items for PubMed ID: 22956610
1. Heparanase and vascular endothelial growth factor expression is increased in hypoxia-induced retinal neovascularization. Hu J, Song X, He YQ, Freeman C, Parish CR, Yuan L, Yu H, Tang S. Invest Ophthalmol Vis Sci; 2012 Oct 03; 53(11):6810-7. PubMed ID: 22956610 [Abstract] [Full Text] [Related]
2. Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model. Liang XJ, Yuan L, Hu J, Yu HH, Li T, Lin SF, Tang SB. Mol Vis; 2012 Oct 03; 18():1649-57. PubMed ID: 22773903 [Abstract] [Full Text] [Related]
3. Retinal heparanase expression in streptozotocin-induced diabetic rats. Ma P, Luo Y, Zhu X, Li T, Hu J, Tang S. Can J Ophthalmol; 2010 Feb 03; 45(1):46-51. PubMed ID: 20130710 [Abstract] [Full Text] [Related]
4. Ephrin-a4 is involved in retinal neovascularization by regulating the VEGF signaling pathway. Du W, Yu W, Huang L, Zhao M, Li X. Invest Ophthalmol Vis Sci; 2012 Apr 18; 53(4):1990-8. PubMed ID: 22408005 [Abstract] [Full Text] [Related]
5. Silencing of S100A4, a metastasis-associated protein, inhibits retinal neovascularization via the downregulation of BDNF in oxygen-induced ischaemic retinopathy. Cheng G, He T, Xing Y. Eye (Lond); 2016 Jun 18; 30(6):877-87. PubMed ID: 26987588 [Abstract] [Full Text] [Related]
6. Anti-angiogenic effect of luteolin on retinal neovascularization via blockade of reactive oxygen species production. Park SW, Cho CS, Jun HO, Ryu NH, Kim JH, Yu YS, Kim JS, Kim JH. Invest Ophthalmol Vis Sci; 2012 Nov 19; 53(12):7718-26. PubMed ID: 23099493 [Abstract] [Full Text] [Related]
7. Heparanase mediates vascular endothelial growth factor gene transcription in high-glucose human retinal microvascular endothelial cells. Hu J, Wang J, Leng X, Hu Y, Shen H, Song X. Mol Vis; 2017 Nov 19; 23():579-587. PubMed ID: 28848320 [Abstract] [Full Text] [Related]
9. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade. Ristori C, Filippi L, Dal Monte M, Martini D, Cammalleri M, Fortunato P, la Marca G, Fiorini P, Bagnoli P. Invest Ophthalmol Vis Sci; 2011 Jan 05; 52(1):155-70. PubMed ID: 20739470 [Abstract] [Full Text] [Related]
10. The role of cytochrome P450 epoxygenases in retinal angiogenesis. Capozzi ME, McCollum GW, Penn JS. Invest Ophthalmol Vis Sci; 2014 Jun 10; 55(7):4253-60. PubMed ID: 24917142 [Abstract] [Full Text] [Related]
13. Captopril and vascular endothelial growth factor in a mouse model of retinopathy. Higgins RD, Yan Y, Geng Y, Sharma J, Barr SM. Curr Eye Res; 2003 Aug 10; 27(2):123-9. PubMed ID: 14632165 [Abstract] [Full Text] [Related]
19. Suppression of Retinal Neovascularization by Anti-CCR3 Treatment in an Oxygen-Induced Retinopathy Model in Mice. Hirahara S, Nozaki M, Ohbayashi M, Hasegawa N, Ozone D, Ogura Y. Ophthalmic Res; 2017 Aug 10; 58(1):56-66. PubMed ID: 28376500 [Abstract] [Full Text] [Related]