These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 22958101

  • 1. Selection, characterization, and biosensing application of high affinity congener-specific microcystin-targeting aptamers.
    Ng A, Chinnappan R, Eissa S, Liu H, Tlili C, Zourob M.
    Environ Sci Technol; 2012 Oct 02; 46(19):10697-703. PubMed ID: 22958101
    [Abstract] [Full Text] [Related]

  • 2. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes.
    Eissa S, Ng A, Siaj M, Zourob M.
    Anal Chem; 2014 Aug 05; 86(15):7551-7. PubMed ID: 25011536
    [Abstract] [Full Text] [Related]

  • 3. An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement.
    Chinnappan R, AlZabn R, Abu-Salah KM, Zourob M.
    Mikrochim Acta; 2019 Jun 13; 186(7):435. PubMed ID: 31197617
    [Abstract] [Full Text] [Related]

  • 4. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl.
    Taghdisi SM, Danesh NM, Ramezani M, Ghows N, Mousavi Shaegh SA, Abnous K.
    Talanta; 2017 May 01; 166():187-192. PubMed ID: 28213221
    [Abstract] [Full Text] [Related]

  • 5. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy.
    Liu X, Tang Y, Liu P, Yang L, Li L, Zhang Q, Zhou Y, Khan MZH.
    Analyst; 2019 Feb 25; 144(5):1671-1678. PubMed ID: 30652696
    [Abstract] [Full Text] [Related]

  • 6. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.
    Elshafey R, Siaj M, Zourob M.
    Anal Chem; 2014 Sep 16; 86(18):9196-203. PubMed ID: 25122072
    [Abstract] [Full Text] [Related]

  • 7. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR.
    He D, Wu Z, Cui B, Jin Z.
    Food Chem; 2019 Apr 25; 278():197-202. PubMed ID: 30583362
    [Abstract] [Full Text] [Related]

  • 8. Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor.
    Lin Z, Huang H, Xu Y, Gao X, Qiu B, Chen X, Chen G.
    Talanta; 2013 Jan 15; 103():371-4. PubMed ID: 23200401
    [Abstract] [Full Text] [Related]

  • 9. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.
    Li X, Cheng R, Shi H, Tang B, Xiao H, Zhao G.
    J Hazard Mater; 2016 Mar 05; 304():474-80. PubMed ID: 26619046
    [Abstract] [Full Text] [Related]

  • 10. [In vitro selection of specific aptamers against microcystin-LR].
    Gu KD, Famulok M.
    Zhonghua Yu Fang Yi Xue Za Zhi; 2004 Nov 05; 38(6):369-73. PubMed ID: 15569506
    [Abstract] [Full Text] [Related]

  • 11. Determination of microcystin-LR, employing aptasensors.
    Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, Tsatsakis AM, Karimi G.
    Biosens Bioelectron; 2018 Nov 15; 119():110-118. PubMed ID: 30121422
    [Abstract] [Full Text] [Related]

  • 12. In vitro selection of DNA aptamers binding ethanolamine.
    Mann D, Reinemann C, Stoltenburg R, Strehlitz B.
    Biochem Biophys Res Commun; 2005 Dec 30; 338(4):1928-34. PubMed ID: 16289104
    [Abstract] [Full Text] [Related]

  • 13. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing.
    Lv J, Zhao S, Wu S, Wang Z.
    Biosens Bioelectron; 2017 Apr 15; 90():203-209. PubMed ID: 27898377
    [Abstract] [Full Text] [Related]

  • 14. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode.
    Du X, Jiang D, Dai L, Zhou L, Hao N, Qian J, Qiu B, Wang K.
    Biosens Bioelectron; 2016 Jul 15; 81():242-248. PubMed ID: 26963789
    [Abstract] [Full Text] [Related]

  • 15. An aptamer-based immunoassay in microchannels of a portable analyzer for detection of microcystin-leucine-arginine.
    Xiang A, Lei X, Ren F, Zang L, Wang Q, Zhang J, Lu Z, Guo Y.
    Talanta; 2014 Dec 15; 130():363-9. PubMed ID: 25159422
    [Abstract] [Full Text] [Related]

  • 16. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone.
    Li Z, Zhang S, Yu T, Dai Z, Wei Q.
    Anal Chem; 2019 Aug 20; 91(16):10448-10457. PubMed ID: 31192585
    [Abstract] [Full Text] [Related]

  • 17. CeO2 nanocages with tetra-enzyme mimetic activities for dual-channel ratiometric colorimetric detection of microcystins-LR.
    Wang G, Guo J, Zou J, Lei Z.
    Anal Chim Acta; 2024 Jun 01; 1306():342599. PubMed ID: 38692792
    [Abstract] [Full Text] [Related]

  • 18. A membrane-based ELISA assay and electrochemical immunosensor for microcystin-LR in water samples.
    Lotierzo M, Abuknesha R, Davis F, Tothill IE.
    Environ Sci Technol; 2012 May 15; 46(10):5504-10. PubMed ID: 22493936
    [Abstract] [Full Text] [Related]

  • 19. Identification of the target binding site of ethanolamine-binding aptamers and its exploitation for ethanolamine detection.
    Heilkenbrinker A, Reinemann C, Stoltenburg R, Walter JG, Jochums A, Stahl F, Zimmermann S, Strehlitz B, Scheper T.
    Anal Chem; 2015 Jan 06; 87(1):677-85. PubMed ID: 25435319
    [Abstract] [Full Text] [Related]

  • 20. Electrochemical immunoassay using quantum dot/antibody probe for identification of cyanobacterial hepatotoxin microcystin-LR.
    Yu HW, Lee J, Kim S, Nguyen GH, Kim IS.
    Anal Bioanal Chem; 2009 Aug 06; 394(8):2173-81. PubMed ID: 19585111
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.