These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 22959558

  • 21. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ, Knoerzer K.
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [Abstract] [Full Text] [Related]

  • 22. Characterization of the acoustic cavitation in ionic liquids in a horn-type ultrasound reactor.
    Schieppati D, Mohan M, Blais B, Fattahi K, Patience GS, Simmons BA, Singh S, Boffito DC.
    Ultrason Sonochem; 2024 Jan; 102():106721. PubMed ID: 38103370
    [Abstract] [Full Text] [Related]

  • 23. The detection and control of stable and transient acoustic cavitation bubbles.
    Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A.
    Phys Chem Chem Phys; 2009 Nov 21; 11(43):10118-21. PubMed ID: 19865767
    [Abstract] [Full Text] [Related]

  • 24. Extraction of tungsten from scheelite using hydrodynamic and acoustic cavitation.
    Johansson Ö, Pamidi T, Shankar V.
    Ultrason Sonochem; 2021 Mar 21; 71():105408. PubMed ID: 33310454
    [Abstract] [Full Text] [Related]

  • 25. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI, Le Naour C, Moisy P.
    Ultrason Sonochem; 2007 Mar 21; 14(3):330-6. PubMed ID: 16996294
    [Abstract] [Full Text] [Related]

  • 26. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.
    Tudela I, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J.
    Ultrason Sonochem; 2014 May 21; 21(3):909-19. PubMed ID: 24355287
    [Abstract] [Full Text] [Related]

  • 27. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y, Lim M, Khim J, Ashokkumar M.
    Ultrason Sonochem; 2012 Jan 21; 19(1):16-21. PubMed ID: 21705256
    [Abstract] [Full Text] [Related]

  • 28. Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production.
    Hussain MN, Janajreh I.
    Ultrason Sonochem; 2018 Jan 21; 40(Pt A):184-193. PubMed ID: 28946413
    [Abstract] [Full Text] [Related]

  • 29. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields.
    Kauer M, Belova-Magri V, Cairós C, Schreier HJ, Mettin R.
    Ultrason Sonochem; 2017 Jan 21; 34():474-483. PubMed ID: 27773271
    [Abstract] [Full Text] [Related]

  • 30. Contributions of reactor geometry and ultrasound frequency on the efficiency of sonochemical reactor.
    Kewalramani JA, Bezerra de Souza B, Marsh RW, Meegoda JN.
    Ultrason Sonochem; 2023 Aug 21; 98():106529. PubMed ID: 37487437
    [Abstract] [Full Text] [Related]

  • 31. Methods for measuring acoustic power of an ultrasonic neurosurgical device.
    Petosić A, Ivancević B, Svilar D, Stimac T, Paladino J, Oresković D, Jurjević I, Klarica M.
    Coll Antropol; 2011 Jan 21; 35 Suppl 1():107-13. PubMed ID: 21648319
    [Abstract] [Full Text] [Related]

  • 32. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M, Choi MJ, Zeqiri B.
    Ultrason Sonochem; 2007 Jan 21; 14(1):29-40. PubMed ID: 16549381
    [Abstract] [Full Text] [Related]

  • 33. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS, Dincer I, Mohany A.
    Ultrason Sonochem; 2020 Nov 21; 68():105174. PubMed ID: 32505100
    [Abstract] [Full Text] [Related]

  • 34. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study.
    Hodnett M, Chow R, Zeqiri B.
    Ultrason Sonochem; 2004 Sep 21; 11(6):441-54. PubMed ID: 15302033
    [Abstract] [Full Text] [Related]

  • 35. A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents.
    Toma M, Fukutomi S, Asakura Y, Koda S.
    Ultrason Sonochem; 2011 Jan 21; 18(1):197-208. PubMed ID: 20655791
    [Abstract] [Full Text] [Related]

  • 36. Study of an acoustic technique to detect cavitation produced by a tilting disc valve.
    Herman BA, Porter JM, Carey RF.
    J Heart Valve Dis; 1996 Jan 21; 5(1):90-6. PubMed ID: 8834731
    [Abstract] [Full Text] [Related]

  • 37. Sonochemical reaction with microbubbles generated by hollow ultrasonic horn.
    Makuta T, Aizawa Y, Suzuki R.
    Ultrason Sonochem; 2013 Jul 21; 20(4):997-1001. PubMed ID: 23332459
    [Abstract] [Full Text] [Related]

  • 38. Matching a transducer to water at cavitation: acoustic horn design principles.
    Peshkovsky SL, Peshkovsky AS.
    Ultrason Sonochem; 2007 Mar 21; 14(3):314-22. PubMed ID: 16905351
    [Abstract] [Full Text] [Related]

  • 39. Influence of liquid-surface vibration on sonochemiluminescence intensity.
    Tuziuti T, Yasui K, Kozuka T, Towata A.
    J Phys Chem A; 2010 Jul 15; 114(27):7321-5. PubMed ID: 20553009
    [Abstract] [Full Text] [Related]

  • 40. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X, Cegla FB, Lowe M, Thiemann A, Nowak T, Mettin R, Holsteyns F, Lippert A.
    Ultrasonics; 2011 Dec 15; 51(8):1014-25. PubMed ID: 21719064
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.