These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


366 related items for PubMed ID: 22962679

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis.
    Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U.
    Plant Cell; 2012 Feb; 24(2):738-61. PubMed ID: 22374396
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.
    Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK.
    Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The strength of the miR398-Csd2-CCS1 regulon is subject to natural variation in Arabidopsis thaliana.
    Juszczak I, Baier M.
    FEBS Lett; 2012 Sep 21; 586(19):3385-90. PubMed ID: 22841720
    [Abstract] [Full Text] [Related]

  • 10. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis.
    Cai Y, Li Y, Liang G.
    Plant Cell Environ; 2021 May 21; 44(5):1679-1691. PubMed ID: 33464620
    [Abstract] [Full Text] [Related]

  • 11. Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana.
    Gollhofer J, Schläwicke C, Jungnick N, Schmidt W, Buckhout TJ.
    Plant Physiol Biochem; 2011 May 21; 49(5):557-64. PubMed ID: 21411332
    [Abstract] [Full Text] [Related]

  • 12. The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis.
    Garcia L, Mansilla N, Ocampos N, Pagani MA, Welchen E, Gonzalez DH.
    Plant Mol Biol; 2019 Apr 21; 99(6):621-638. PubMed ID: 30778722
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis.
    Eroglu S, Aksoy E.
    Biometals; 2017 Oct 21; 30(5):685-698. PubMed ID: 28744713
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis.
    Beauclair L, Yu A, Bouché N.
    Plant J; 2010 May 21; 62(3):454-62. PubMed ID: 20128885
    [Abstract] [Full Text] [Related]

  • 18. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC.
    New Phytol; 2011 Apr 21; 190(1):125-137. PubMed ID: 21219335
    [Abstract] [Full Text] [Related]

  • 19. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis.
    Abdel-Ghany SE, Pilon M.
    J Biol Chem; 2008 Jun 06; 283(23):15932-45. PubMed ID: 18408011
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.