These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 22965479

  • 1. Highly sensitive optical biosensor for thrombin based on structure switching aptamer-luminescent silica nanoparticles.
    Babu E, Mareeswaran PM, Rajagopal S.
    J Fluoresc; 2013 Jan; 23(1):137-46. PubMed ID: 22965479
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer.
    Zhu X, Zhang Y, Yang W, Liu Q, Lin Z, Qiu B, Chen G.
    Anal Chim Acta; 2011 Jan 17; 684(1-2):121-5. PubMed ID: 21167993
    [Abstract] [Full Text] [Related]

  • 4. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization.
    Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J.
    Biosens Bioelectron; 2014 Jun 15; 56():231-6. PubMed ID: 24508546
    [Abstract] [Full Text] [Related]

  • 5. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer.
    Jo H, Her J, Ban C.
    Biosens Bioelectron; 2015 Sep 15; 71():129-136. PubMed ID: 25897882
    [Abstract] [Full Text] [Related]

  • 6. Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors.
    Song K, Kong X, Liu X, Zhang Y, Zeng Q, Tu L, Shi Z, Zhang H.
    Chem Commun (Camb); 2012 Jan 28; 48(8):1156-8. PubMed ID: 22159457
    [Abstract] [Full Text] [Related]

  • 7. An aptamer-based assay for thrombin via structure switch based on gold nanoparticles and magnetic nanoparticles.
    Zheng J, Cheng GF, He PG, Fang YZ.
    Talanta; 2010 Mar 15; 80(5):1868-72. PubMed ID: 20152425
    [Abstract] [Full Text] [Related]

  • 8. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin.
    Yu J, Yang L, Liang X, Dong T, Liu H.
    Analyst; 2015 Jun 21; 140(12):4114-20. PubMed ID: 25894923
    [Abstract] [Full Text] [Related]

  • 9. A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)(3)(2+)-doped silica nanoparticle ECL by ferrocene.
    Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G.
    Chem Commun (Camb); 2010 Nov 07; 46(41):7751-3. PubMed ID: 20852786
    [Abstract] [Full Text] [Related]

  • 10. An aptamer-based biosensor for sensitive thrombin detection with phthalocyanine@SiO2 mesoporous nanoparticles.
    Jiang Z, Yang T, Liu M, Hu Y, Wang J.
    Biosens Bioelectron; 2014 Mar 15; 53():340-5. PubMed ID: 24176970
    [Abstract] [Full Text] [Related]

  • 11. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe.
    Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2645-50. PubMed ID: 21146976
    [Abstract] [Full Text] [Related]

  • 12. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin.
    Deng L, Du Y, Xu JJ, Chen HY.
    Biosens Bioelectron; 2014 Sep 15; 59():58-63. PubMed ID: 24699694
    [Abstract] [Full Text] [Related]

  • 13. Electroluminescent aptasensor based on RuSiO2 nanoparticles for detection cytochrome c using ferrocene as quenching probe.
    Sha H, Zhang Y, Wang Y, Ke H, Xiong X, Xue H, Jia N.
    Biosens Bioelectron; 2019 May 01; 132():203-209. PubMed ID: 30875632
    [Abstract] [Full Text] [Related]

  • 14. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor.
    Liao Y, Yuan R, Chai Y, Zhuo Y, Yuan Y, Bai L, Mao L, Yuan S.
    Biosens Bioelectron; 2011 Aug 15; 26(12):4815-8. PubMed ID: 21696941
    [Abstract] [Full Text] [Related]

  • 15. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma.
    Wang Y, Bao L, Liu Z, Pang DW.
    Anal Chem; 2011 Nov 01; 83(21):8130-7. PubMed ID: 21923110
    [Abstract] [Full Text] [Related]

  • 16. Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods.
    Yasun E, Gulbakan B, Ocsoy I, Yuan Q, Shukoor MI, Li C, Tan W.
    Anal Chem; 2012 Jul 17; 84(14):6008-15. PubMed ID: 22725611
    [Abstract] [Full Text] [Related]

  • 17. Selective recognition of co-assembled thrombin aptamer and docetaxel on mesoporous silica nanoparticles against tumor cell proliferation.
    Gao L, Cui Y, He Q, Yang Y, Fei J, Li J.
    Chemistry; 2011 Nov 18; 17(47):13170-4. PubMed ID: 22012586
    [No Abstract] [Full Text] [Related]

  • 18. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)(3)(2+)-double-strand DNA composite film electrode.
    Yin XB, Xin YY, Zhao Y.
    Anal Chem; 2009 Nov 15; 81(22):9299-305. PubMed ID: 19827791
    [Abstract] [Full Text] [Related]

  • 19. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement.
    Gan X, Yuan R, Chai Y, Yuan Y, Mao L, Cao Y, Liao Y.
    Biosens Bioelectron; 2012 Apr 15; 34(1):25-9. PubMed ID: 22387036
    [Abstract] [Full Text] [Related]

  • 20. Aptamer-based ATP assay using a luminescent light switching complex.
    Wang J, Jiang Y, Zhou C, Fang X.
    Anal Chem; 2005 Jun 01; 77(11):3542-6. PubMed ID: 15924387
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.