These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 22966594

  • 1. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.
    Kim Y, Lam ND, Kim K, Kim S, Rotermund F, Lim H, Lee J.
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5479-83. PubMed ID: 22966594
    [Abstract] [Full Text] [Related]

  • 2. Ge Solar Cells with Micro-Rod Arrays: Structural and Optical Properties.
    Yun Y, Kim K, Lee J.
    J Nanosci Nanotechnol; 2021 Aug 01; 21(8):4347-4352. PubMed ID: 33714326
    [Abstract] [Full Text] [Related]

  • 3. GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells.
    Chao JJ, Shiu SC, Hung SC, Lin CF.
    Nanotechnology; 2010 Jul 16; 21(28):285203. PubMed ID: 20562485
    [Abstract] [Full Text] [Related]

  • 4. Embossed Mie resonator arrays composed of compacted TiO2 nanoparticles for broadband anti-reflection in solar cells.
    Visser D, Chen DY, Désières Y, Ravishankar AP, Anand S.
    Sci Rep; 2020 Jul 27; 10(1):12527. PubMed ID: 32719504
    [Abstract] [Full Text] [Related]

  • 5. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
    Song Y, Choi K, Jun DH, Oh J.
    Opt Express; 2017 Oct 02; 25(20):23862-23872. PubMed ID: 29041335
    [Abstract] [Full Text] [Related]

  • 6. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA, Karar AA, Mustafa E, Nur O.
    Nanoscale Res Lett; 2021 Sep 20; 16(1):149. PubMed ID: 34542730
    [Abstract] [Full Text] [Related]

  • 7. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures.
    Lee K, Hwang I, Kim N, Choi D, Um HD, Kim S, Seo K.
    Nanoscale; 2016 Aug 14; 8(30):14473-9. PubMed ID: 27405387
    [Abstract] [Full Text] [Related]

  • 8. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
    Moon S, Kim K, Kim Y, Heo J, Lee J.
    Sci Rep; 2016 Jul 20; 6():30107. PubMed ID: 27435899
    [Abstract] [Full Text] [Related]

  • 9. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces.
    Dmitruk NL, Borkovskaya OY, Mamontova IB, Mamykin SV, Malynych SZ, Romanyuk VR.
    Nanoscale Res Lett; 2015 Jul 20; 10():72. PubMed ID: 25852368
    [Abstract] [Full Text] [Related]

  • 10. Efficiency enhancement InGaP/GaAs dual-junction solar cell with subwavelength antireflection nanorod arrays.
    Tsai MA, Chen HC, Tseng PC, Yu P, Chiu CH, Kuo HC, Lin SH.
    J Nanosci Nanotechnol; 2011 Dec 20; 11(12):10729-32. PubMed ID: 22408983
    [Abstract] [Full Text] [Related]

  • 11. Performance comparison of III-V//Si and III-V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding.
    Kao YC, Chou HM, Hsu SC, Lin A, Lin CC, Shih ZH, Chang CL, Hong HF, Horng RH.
    Sci Rep; 2019 Mar 13; 9(1):4308. PubMed ID: 30867491
    [Abstract] [Full Text] [Related]

  • 12. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition.
    Kim Y, Lam ND, Kim K, Park WK, Lee J.
    Sci Rep; 2017 Feb 17; 7():42693. PubMed ID: 28209964
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N, Yang ZX, Wang F, Dong G, Yip S, Liang X, Hung TF, Chen Y, Ho JC.
    ACS Appl Mater Interfaces; 2015 Sep 16; 7(36):20454-9. PubMed ID: 26284305
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Vertical growth of core-shell III-V nanowires for solar cells application.
    Kim DY, Bae MH, Shin JC, Kim YJ, Lee YJ, Choi KJ, Seong TY, Choi WJ.
    J Nanosci Nanotechnol; 2014 Apr 16; 14(4):2913-8. PubMed ID: 24734710
    [Abstract] [Full Text] [Related]

  • 17. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B, Sun Y, Lim H, Chen H, Faucher J, Lee ML, Yoon J.
    ACS Nano; 2017 Jan 24; 11(1):992-999. PubMed ID: 28075560
    [Abstract] [Full Text] [Related]

  • 18. Annealing of Au, Ag and Au-Ag alloy nanoparticle arrays on GaAs (100) and (111)B.
    Whiticar AM, Mårtensson EK, Nygård J, Dick KA, Bolinsson J.
    Nanotechnology; 2017 May 19; 28(20):205702. PubMed ID: 28445163
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.
    Jung SH, Kim Y, Kim CZ, Jun DH, Kim K, Shin HB, Choi J, Park WK, Lee J, Kang HK.
    J Nanosci Nanotechnol; 2017 Apr 19; 17(4):2559-562. PubMed ID: 29658687
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.