These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


477 related items for PubMed ID: 22966909

  • 1. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance.
    Rojas J, Buckner I, Kumar V.
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1159-70. PubMed ID: 22966909
    [Abstract] [Full Text] [Related]

  • 2. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties.
    Mangal S, Meiser F, Morton D, Larson I.
    Curr Pharm Des; 2015 Oct; 21(40):5877-89. PubMed ID: 26446468
    [Abstract] [Full Text] [Related]

  • 3. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties.
    Chaheen M, Bataille B, Yassine A, Belamie E, Sharkawi T.
    J Pharm Sci; 2019 Oct; 108(10):3319-3328. PubMed ID: 31145923
    [Abstract] [Full Text] [Related]

  • 4. Direct compression high functionality excipient using coprocessing technique: a brief review.
    Mirani AG, Patankar SP, Borole VS, Pawar AS, Kadam VJ.
    Curr Drug Deliv; 2011 Jul; 8(4):426-35. PubMed ID: 21235470
    [Abstract] [Full Text] [Related]

  • 5. A compressibility and compactibility study of real tableting mixtures: the impact of wet and dry granulation versus a direct tableting mixture.
    Šantl M, Ilić I, Vrečer F, Baumgartner S.
    Int J Pharm; 2011 Jul 29; 414(1-2):131-9. PubMed ID: 21605646
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of powder characteristics on oral tablet disintegration.
    Yamamoto Y, Fujii M, Watanabe K, Tsukamoto M, Shibata Y, Kondoh M, Watanabe Y.
    Int J Pharm; 2009 Jan 05; 365(1-2):116-20. PubMed ID: 18804156
    [Abstract] [Full Text] [Related]

  • 13. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A, DeHart M, Stagner WC, Haware RV.
    Drug Dev Ind Pharm; 2017 Apr 05; 43(4):574-583. PubMed ID: 27977316
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design.
    Dai S, Xu B, Zhang Z, Yu J, Wang F, Shi X, Qiao Y.
    Int J Pharm; 2019 Dec 15; 572():118742. PubMed ID: 31648016
    [Abstract] [Full Text] [Related]

  • 17. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M, Kumar V.
    Int J Pharm; 2007 Jun 07; 337(1-2):202-9. PubMed ID: 17376616
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle.
    Katz JM, Roopwani R, Buckner IS.
    J Pharm Sci; 2013 Oct 07; 102(10):3687-93. PubMed ID: 23897398
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.