These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 22967223

  • 1. Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model with durability studies: application to Bacillus cereus on a courgette purée production chain.
    Rigaux C, Ancelet S, Carlin F, Nguyen-thé C, Albert I.
    Risk Anal; 2013 May; 33(5):877-92. PubMed ID: 22967223
    [Abstract] [Full Text] [Related]

  • 2. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods.
    Afchain AL, Carlin F, Nguyen-The C, Albert I.
    Int J Food Microbiol; 2008 Nov 30; 128(1):165-73. PubMed ID: 18805600
    [Abstract] [Full Text] [Related]

  • 3. Graphical models and Bayesian domains in risk modelling: application in microbiological risk assessment.
    Greiner M, Smid J, Havelaar AH, Müller-Graf C.
    Prev Vet Med; 2013 May 15; 110(1):4-11. PubMed ID: 23482086
    [Abstract] [Full Text] [Related]

  • 4. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ, Pintar KD, Fazil AM, Topp E.
    Risk Anal; 2013 Sep 15; 33(9):1677-93. PubMed ID: 23311599
    [Abstract] [Full Text] [Related]

  • 5. Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases.
    Albert I, Grenier E, Denis JB, Rousseau J.
    Risk Anal; 2008 Apr 15; 28(2):557-71. PubMed ID: 18419669
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A quantitative microbiological exposure assessment model for Bacillus cereus in pasteurized rice cakes using computational fluid dynamics and Monte Carlo simulation.
    Park HW, Yoon WB.
    Food Res Int; 2019 Nov 15; 125():108562. PubMed ID: 31554100
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM, Kan-King-Yu D, Blackburn Cde W.
    Int J Food Microbiol; 2008 Nov 30; 128(1):28-33. PubMed ID: 18691785
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks.
    Beaudequin D, Harden F, Roiko A, Stratton H, Lemckert C, Mengersen K.
    Environ Int; 2015 Jul 30; 80():8-18. PubMed ID: 25827265
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N, Cornu M, Beaufort A, Rosso L, Denis JB.
    Risk Anal; 2005 Feb 30; 25(1):39-48. PubMed ID: 15787755
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. QMRA and decision-making: are we handling measurement errors associated with pathogen concentration data correctly?
    Schmidt PJ, Emelko MB.
    Water Res; 2011 Jan 30; 45(2):427-38. PubMed ID: 20851444
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.