These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
84 related items for PubMed ID: 22968126
1. Genome-wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cell-free system. Takahashi H, Ozawa A, Nemoto K, Nozawa A, Seki M, Shinozaki K, Takeda H, Endo Y, Sawasaki T. FEBS Lett; 2012 Sep 21; 586(19):3134-41. PubMed ID: 22968126 [Abstract] [Full Text] [Related]
2. Genome-scale discovery and characterization of class-specific protein sequences: an example using the protein phosphatases of Arabidopsis thaliana. Kerk D. Methods Mol Biol; 2007 Sep 21; 365():347-70. PubMed ID: 17200574 [Abstract] [Full Text] [Related]
3. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Koiwa H, Hausmann S, Bang WY, Ueda A, Kondo N, Hiraguri A, Fukuhara T, Bahk JD, Yun DJ, Bressan RA, Hasegawa PM, Shuman S. Proc Natl Acad Sci U S A; 2004 Oct 05; 101(40):14539-44. PubMed ID: 15388846 [Abstract] [Full Text] [Related]
4. Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity. Reddy MM, Rajasekharan R. Arch Biochem Biophys; 2007 Apr 01; 460(1):122-8. PubMed ID: 17291444 [Abstract] [Full Text] [Related]
5. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Mora-García S, Vert G, Yin Y, Caño-Delgado A, Cheong H, Chory J. Genes Dev; 2004 Feb 15; 18(4):448-60. PubMed ID: 14977918 [Abstract] [Full Text] [Related]
6. Arabidopsis PPP family of serine/threonine phosphatases. Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. Trends Plant Sci; 2007 Apr 15; 12(4):169-76. PubMed ID: 17368080 [Abstract] [Full Text] [Related]
7. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Uhrig RG, Labandera AM, Moorhead GB. Trends Plant Sci; 2013 Sep 15; 18(9):505-13. PubMed ID: 23790269 [Abstract] [Full Text] [Related]
8. The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF. FEBS J; 2010 Jan 15; 277(2):428-40. PubMed ID: 19968859 [Abstract] [Full Text] [Related]
9. Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. Nemoto K, Seto T, Takahashi H, Nozawa A, Seki M, Shinozaki K, Endo Y, Sawasaki T. Phytochemistry; 2011 Jul 15; 72(10):1136-44. PubMed ID: 21477822 [Abstract] [Full Text] [Related]
10. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Stone JM, Collinge MA, Smith RD, Horn MA, Walker JC. Science; 1994 Nov 04; 266(5186):793-5. PubMed ID: 7973632 [Abstract] [Full Text] [Related]
11. Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Servet C, Benhamed M, Latrasse D, Kim W, Delarue M, Zhou DX. Biochim Biophys Acta; 2008 Nov 04; 1779(6-7):376-82. PubMed ID: 18498779 [Abstract] [Full Text] [Related]
12. Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase. Landrieu I, Hassan S, Sauty M, Dewitte F, Wieruszeski JM, Inzé D, De Veylder L, Lippens G. Biochem Biophys Res Commun; 2004 Sep 24; 322(3):734-9. PubMed ID: 15336525 [Abstract] [Full Text] [Related]
13. PAH-domain-specific interactions of the Arabidopsis transcription coregulator SIN3-LIKE1 (SNL1) with telomere-binding protein 1 and ALWAYS EARLY2 Myb-DNA binding factors. Bowen AJ, Gonzalez D, Mullins JG, Bhatt AM, Martinez A, Conlan RS. J Mol Biol; 2010 Feb 05; 395(5):937-49. PubMed ID: 19962994 [Abstract] [Full Text] [Related]
14. Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana. Lehmann T, Pollmann S. FEBS Lett; 2009 Jun 18; 583(12):1895-900. PubMed ID: 19450582 [Abstract] [Full Text] [Related]
15. Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Feng Y, Kang JS, Kim S, Yun DJ, Lee SY, Bahk JD, Koiwa H. Biochem Biophys Res Commun; 2010 Jun 25; 397(2):355-60. PubMed ID: 20513350 [Abstract] [Full Text] [Related]
16. Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. Hussain A, Cao D, Cheng H, Wen Z, Peng J. Plant J; 2005 Oct 25; 44(1):88-99. PubMed ID: 16167898 [Abstract] [Full Text] [Related]
17. Arabidopsis thaliana expresses a second functional flavonol synthase. Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S. FEBS Lett; 2009 Jun 18; 583(12):1981-6. PubMed ID: 19433090 [Abstract] [Full Text] [Related]
18. A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG, Moorhead GB. Plant J; 2006 May 18; 46(3):400-13. PubMed ID: 16623901 [Abstract] [Full Text] [Related]
19. Protein phosphatase 2A and protein phosphatase X genes in Arabidopsis thaliana. Pujol G, Ferrer A, Ariño J. Methods Mol Biol; 1998 May 18; 93():201-12. PubMed ID: 9664538 [No Abstract] [Full Text] [Related]
20. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Science; 2009 May 22; 324(5930):1064-8. PubMed ID: 19407143 [Abstract] [Full Text] [Related] Page: [Next] [New Search]