These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
520 related items for PubMed ID: 22975306
1. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Szymczycha B, Vogler S, Pempkowiak J. Sci Total Environ; 2012 Nov 01; 438():86-93. PubMed ID: 22975306 [Abstract] [Full Text] [Related]
2. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Lee YW, Hwang DW, Kim G, Lee WC, Oh HT. Sci Total Environ; 2009 Apr 15; 407(9):3181-8. PubMed ID: 18538821 [Abstract] [Full Text] [Related]
3. What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean? Weinstein Y, Yechieli Y, Shalem Y, Burnett WC, Swarzenski PW, Herut B. Environ Sci Technol; 2011 Jun 15; 45(12):5195-200. PubMed ID: 21612201 [Abstract] [Full Text] [Related]
4. Significance of submarine groundwater discharge in the coastal fluxes of mercury in Hampyeong Bay, Yellow Sea. Rahman MM, Lee YG, Kim G, Lee K, Han S. Chemosphere; 2013 Apr 15; 91(3):320-7. PubMed ID: 23276461 [Abstract] [Full Text] [Related]
6. Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea. Wu Z, Zhou H, Zhang S, Liu Y. Mar Pollut Bull; 2013 Aug 15; 73(1):183-91. PubMed ID: 23790526 [Abstract] [Full Text] [Related]
7. A nutrient loading budget for Biscayne Bay, Florida. Caccia VG, Boyer JN. Mar Pollut Bull; 2007 Jul 15; 54(7):994-1008. PubMed ID: 17418240 [Abstract] [Full Text] [Related]
9. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Szymczycha B, Kroeger KD, Pempkowiak J. Mar Pollut Bull; 2016 Aug 15; 109(1):151-162. PubMed ID: 27293076 [Abstract] [Full Text] [Related]
11. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system. Ganguli PM, Conaway CH, Swarzenski PW, Izbicki JA, Flegal AR. Environ Sci Technol; 2012 Feb 07; 46(3):1480-8. PubMed ID: 22283682 [Abstract] [Full Text] [Related]
12. Chemical inputs from a karstic submarine groundwater discharge (SGD) into an oligotrophic Mediterranean coastal area. Pavlidou A, Papadopoulos VP, Hatzianestis I, Simboura N, Patiris D, Tsabaris C. Sci Total Environ; 2014 Aug 01; 488-489():1-13. PubMed ID: 24814032 [Abstract] [Full Text] [Related]
13. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using (222)Rn-Si mass balance model. Hwang DW, Lee IS, Choi M, Kim TH. Mar Pollut Bull; 2016 Sep 15; 110(1):119-126. PubMed ID: 27377001 [Abstract] [Full Text] [Related]
17. Submarine groundwater discharge and its implication for nutrient budgets in the western Bohai Bay, China. Wang Q, Li H, Zhang Y, Wang X, Xiao K, Zhang X, Huang Y, Dan SF. J Environ Radioact; 2020 Feb 15; 212():106132. PubMed ID: 31885366 [Abstract] [Full Text] [Related]
19. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Cho HM, Kim G, Kwon EY, Moosdorf N, Garcia-Orellana J, Santos IR. Sci Rep; 2018 Feb 05; 8(1):2439. PubMed ID: 29403050 [Abstract] [Full Text] [Related]
20. Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. Dulaiova H, Camilli R, Henderson PB, Charette MA. J Environ Radioact; 2010 Jul 05; 101(7):553-63. PubMed ID: 20110141 [Abstract] [Full Text] [Related] Page: [Next] [New Search]