These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
478 related items for PubMed ID: 22977136
1. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Takayama K, Hangai M, Durbin M, Nakano N, Morooka S, Akagi T, Ikeda HO, Yoshimura N. Invest Ophthalmol Vis Sci; 2012 Oct 05; 53(11):6904-13. PubMed ID: 22977136 [Abstract] [Full Text] [Related]
2. Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia. Choi YJ, Jeoung JW, Park KH, Kim DM. Invest Ophthalmol Vis Sci; 2013 Mar 28; 54(3):2296-304. PubMed ID: 23462754 [Abstract] [Full Text] [Related]
3. Automated Detection of Hemifield Difference across Horizontal Raphe on Ganglion Cell--Inner Plexiform Layer Thickness Map. Kim YK, Yoo BW, Kim HC, Park KH. Ophthalmology; 2015 Nov 28; 122(11):2252-60. PubMed ID: 26278860 [Abstract] [Full Text] [Related]
4. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Jeoung JW, Choi YJ, Park KH, Kim DM. Invest Ophthalmol Vis Sci; 2013 Jul 01; 54(7):4422-9. PubMed ID: 23722389 [Abstract] [Full Text] [Related]
5. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS. Ophthalmology; 2012 Jun 01; 119(6):1151-8. PubMed ID: 22365056 [Abstract] [Full Text] [Related]
6. Diagnostic ability of macular ganglion cell asymmetry for glaucoma. Hwang YH, Ahn SI, Ko SJ. Clin Exp Ophthalmol; 2015 Nov 01; 43(8):720-6. PubMed ID: 25939316 [Abstract] [Full Text] [Related]
7. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS. Invest Ophthalmol Vis Sci; 2010 Mar 01; 51(3):1446-52. PubMed ID: 19834029 [Abstract] [Full Text] [Related]
8. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Sihota R, Sony P, Gupta V, Dada T, Singh R. Invest Ophthalmol Vis Sci; 2006 May 01; 47(5):2006-10. PubMed ID: 16639009 [Abstract] [Full Text] [Related]
9. Diagnostic performance of optical coherence tomography ganglion cell--inner plexiform layer thickness measurements in early glaucoma. Mwanza JC, Budenz DL, Godfrey DG, Neelakantan A, Sayyad FE, Chang RT, Lee RK. Ophthalmology; 2014 Apr 01; 121(4):849-54. PubMed ID: 24393348 [Abstract] [Full Text] [Related]
10. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Invest Ophthalmol Vis Sci; 2013 Sep 05; 54(9):6025-32. PubMed ID: 23908182 [Abstract] [Full Text] [Related]
11. Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. Rao HL, Kumbar T, Addepalli UK, Bharti N, Senthil S, Choudhari NS, Garudadri CS. Invest Ophthalmol Vis Sci; 2012 Feb 29; 53(2):1058-65. PubMed ID: 22266520 [Abstract] [Full Text] [Related]
12. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N. Invest Ophthalmol Vis Sci; 2011 Mar 14; 52(3):1412-21. PubMed ID: 21087959 [Abstract] [Full Text] [Related]
13. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. Begum VU, Addepalli UK, Yadav RK, Shankar K, Senthil S, Garudadri CS, Rao HL. Invest Ophthalmol Vis Sci; 2014 Jul 11; 55(8):4768-75. PubMed ID: 25015361 [Abstract] [Full Text] [Related]
14. Comparison between deviation map algorithm and peripapillary retinal nerve fiber layer measurements using Cirrus HD-OCT in the detection of localized glaucomatous visual field defects. Kang SY, Sung KR, Na JH, Choi EH, Cho JW, Cheon MH, Kim KH, Kook MS. J Glaucoma; 2012 Aug 11; 21(6):372-8. PubMed ID: 21430549 [Abstract] [Full Text] [Related]
15. Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Shin HY, Park HL, Jung KI, Choi JA, Park CK. Ophthalmology; 2014 Jan 11; 121(1):93-99. PubMed ID: 23962652 [Abstract] [Full Text] [Related]
16. Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression. Lee WJ, Kim YK, Park KH, Jeoung JW. Ophthalmology; 2017 Sep 11; 124(9):1383-1391. PubMed ID: 28412067 [Abstract] [Full Text] [Related]
17. Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Hwang YH, Kim YY. Invest Ophthalmol Vis Sci; 2012 Apr 24; 53(4):2226-34. PubMed ID: 22410556 [Abstract] [Full Text] [Related]
18. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A. Invest Ophthalmol Vis Sci; 2013 Jul 10; 54(7):4478-84. PubMed ID: 23737470 [Abstract] [Full Text] [Related]
19. Glaucoma Detection Ability of Macular Ganglion Cell-Inner Plexiform Layer Thickness in Myopic Preperimetric Glaucoma. Seol BR, Jeoung JW, Park KH. Invest Ophthalmol Vis Sci; 2015 Dec 10; 56(13):8306-13. PubMed ID: 26720484 [Abstract] [Full Text] [Related]
20. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK. Ophthalmology; 2005 Mar 10; 112(3):391-400. PubMed ID: 15745764 [Abstract] [Full Text] [Related] Page: [Next] [New Search]