These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 22983711

  • 1. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides.
    Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J.
    Science; 2012 Oct 19; 338(6105):387-90. PubMed ID: 22983711
    [Abstract] [Full Text] [Related]

  • 2. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.
    Morinaka BI, Vagstad AL, Helf MJ, Gugger M, Kegler C, Freeman MF, Bode HB, Piel J.
    Angew Chem Int Ed Engl; 2014 Aug 04; 53(32):8503-7. PubMed ID: 24943072
    [Abstract] [Full Text] [Related]

  • 3. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei.
    Hamada T, Matsunaga S, Yano G, Fusetani N.
    J Am Chem Soc; 2005 Jan 12; 127(1):110-8. PubMed ID: 15631460
    [Abstract] [Full Text] [Related]

  • 4. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide.
    Helf MJ, Jud A, Piel J.
    Chembiochem; 2017 Mar 02; 18(5):444-450. PubMed ID: 27966282
    [Abstract] [Full Text] [Related]

  • 5. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis.
    Benjdia A, Guillot A, Ruffié P, Leprince J, Berteau O.
    Nat Chem; 2017 Jul 02; 9(7):698-707. PubMed ID: 28644475
    [Abstract] [Full Text] [Related]

  • 6. Introduction of d-Amino Acids in Minimalistic Peptide Substrates by an S-Adenosyl-l-Methionine Radical Epimerase.
    Vagstad AL, Kuranaga T, Püntener S, Pattabiraman VR, Bode JW, Piel J.
    Angew Chem Int Ed Engl; 2019 Feb 18; 58(8):2246-2250. PubMed ID: 30521081
    [Abstract] [Full Text] [Related]

  • 7. An Unusual Flavin-Dependent Halogenase from the Metagenome of the Marine Sponge Theonella swinhoei WA.
    Smith DRM, Uria AR, Helfrich EJN, Milbredt D, van Pée KH, Piel J, Goss RJM.
    ACS Chem Biol; 2017 May 19; 12(5):1281-1287. PubMed ID: 28198609
    [Abstract] [Full Text] [Related]

  • 8. Thioether crosslinkages created by a radical SAM enzyme.
    Zhang Q, Yu Y.
    Chembiochem; 2012 May 29; 13(8):1097-9. PubMed ID: 22556103
    [Abstract] [Full Text] [Related]

  • 9. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA, Bushin LB, Seyedsayamdost MR.
    J Am Chem Soc; 2019 Jul 10; 141(27):10610-10615. PubMed ID: 31246011
    [Abstract] [Full Text] [Related]

  • 10. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis.
    Helf MJ, Freeman MF, Piel J.
    J Ind Microbiol Biotechnol; 2019 Mar 10; 46(3-4):551-563. PubMed ID: 30627933
    [Abstract] [Full Text] [Related]

  • 11. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N, Hudson GA, Mitchell DA.
    Biochemistry; 2017 Oct 10; 56(40):5229-5244. PubMed ID: 28895719
    [Abstract] [Full Text] [Related]

  • 12. [Acidic ribosomal proteins and their role in regulation of translation].
    Grzyb A, Zień P, Pilecki M, Szyszka R.
    Postepy Biochem; 2000 Oct 10; 46(1):38-49. PubMed ID: 15971376
    [No Abstract] [Full Text] [Related]

  • 13. Structures of sea anemone toxins.
    Norton RS.
    Toxicon; 2009 Dec 15; 54(8):1075-88. PubMed ID: 19285996
    [Abstract] [Full Text] [Related]

  • 14. Unique peptide modifications involved in the biosynthesis of lantibiotics.
    Jack RW, Sahl HG.
    Trends Biotechnol; 1995 Jul 15; 13(7):269-78. PubMed ID: 7646850
    [Abstract] [Full Text] [Related]

  • 15. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E, Künzler M.
    Appl Microbiol Biotechnol; 2019 Jul 15; 103(14):5567-5581. PubMed ID: 31147756
    [Abstract] [Full Text] [Related]

  • 16. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A, Lien Y, Mendauletova A, Ngendahimana T, Novitskiy IM, Eaton SS, Latham JA.
    J Biol Chem; 2022 May 15; 298(5):101881. PubMed ID: 35367210
    [Abstract] [Full Text] [Related]

  • 17. Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis.
    Marahiel MA.
    J Pept Sci; 2009 Dec 15; 15(12):799-807. PubMed ID: 19827002
    [Abstract] [Full Text] [Related]

  • 18. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA, Burkhart BJ, DiCaprio AJ, Schwalen CJ, Kille B, Pogorelov TV, Mitchell DA.
    J Am Chem Soc; 2019 May 22; 141(20):8228-8238. PubMed ID: 31059252
    [Abstract] [Full Text] [Related]

  • 19. Radical S-Adenosylmethionine Peptide Epimerases: Detection of Activity and Characterization of d-Amino Acid Products.
    Morinaka BI, Vagstad AL, Piel J.
    Methods Enzymol; 2018 May 22; 604():237-257. PubMed ID: 29779654
    [Abstract] [Full Text] [Related]

  • 20. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives.
    Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC.
    Biochemistry; 2004 Mar 30; 43(12):3385-95. PubMed ID: 15035610
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.