These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
294 related items for PubMed ID: 22988615
1. Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants. Yu MR, Chang YY, Yang JK. Environ Technol; 2012; 33(13-15):1553-9. PubMed ID: 22988615 [Abstract] [Full Text] [Related]
2. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. Chang YY, Song KH, Yang JK. J Hazard Mater; 2008 Feb 11; 150(3):565-72. PubMed ID: 17570581 [Abstract] [Full Text] [Related]
3. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism. Cheng Y, Zhang S, Huang T, Li Y. Water Environ Res; 2019 Jun 11; 91(6):536-545. PubMed ID: 30667121 [Abstract] [Full Text] [Related]
4. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Mondal P, Majumder CB, Mohanty B. J Hazard Mater; 2008 Feb 11; 150(3):695-702. PubMed ID: 17574333 [Abstract] [Full Text] [Related]
5. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead. Qi J, Zhang G, Li H. Bioresour Technol; 2015 Oct 11; 193():243-9. PubMed ID: 26141284 [Abstract] [Full Text] [Related]
6. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe(3+) impregnated activated carbon: effects of shaking time, pH and temperature. Mondal P, Balomajumder C, Mohanty B. J Hazard Mater; 2007 Jun 01; 144(1-2):420-6. PubMed ID: 17141955 [Abstract] [Full Text] [Related]
7. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Zhang G, Qu J, Liu H, Liu R, Wu R. Water Res; 2007 May 01; 41(9):1921-8. PubMed ID: 17382991 [Abstract] [Full Text] [Related]
8. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Lin L, Qiu W, Wang D, Huang Q, Song Z, Chau HW. Ecotoxicol Environ Saf; 2017 Oct 01; 144():514-521. PubMed ID: 28675865 [Abstract] [Full Text] [Related]
9. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Shan C, Tong M. Water Res; 2013 Jun 15; 47(10):3411-21. PubMed ID: 23587265 [Abstract] [Full Text] [Related]
10. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Hu X, Ding Z, Zimmerman AR, Wang S, Gao B. Water Res; 2015 Jan 01; 68():206-16. PubMed ID: 25462729 [Abstract] [Full Text] [Related]
11. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal. Kleinert S, Muehe EM, Posth NR, Dippon U, Daus B, Kappler A. Environ Sci Technol; 2011 Sep 01; 45(17):7533-41. PubMed ID: 21761933 [Abstract] [Full Text] [Related]
12. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. Chun J, Lee H, Lee SH, Hong SW, Lee J, Lee C, Lee J. Chemosphere; 2012 Nov 01; 89(10):1230-7. PubMed ID: 22884493 [Abstract] [Full Text] [Related]
13. The oxidation of As(III) in groundwater using biological manganese removal filtration columns. Yang H, Sun W, Ge H, Yao R. Environ Technol; 2015 Nov 01; 36(21):2732-9. PubMed ID: 26056846 [Abstract] [Full Text] [Related]
14. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Zhang QL, Lin YC, Chen X, Gao NY. J Hazard Mater; 2007 Sep 30; 148(3):671-8. PubMed ID: 17434260 [Abstract] [Full Text] [Related]
15. Arsenic adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed column studies. Nikić J, Agbaba J, Watson MA, Tubić A, Šolić M, Maletić S, Dalmacija B. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019 Sep 30; 54(3):168-178. PubMed ID: 30688160 [Abstract] [Full Text] [Related]
16. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Tresintsi S, Simeonidis K, Estradé S, Martinez-Boubeta C, Vourlias G, Pinakidou F, Katsikini M, Paloura EC, Stavropoulos G, Mitrakas M. Environ Sci Technol; 2013 Sep 03; 47(17):9699-705. PubMed ID: 23888913 [Abstract] [Full Text] [Related]
17. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst. Quintanilla A, Fraile AF, Casas JA, Rodríguez JJ. J Hazard Mater; 2007 Jul 31; 146(3):582-8. PubMed ID: 17513048 [Abstract] [Full Text] [Related]
18. Application of iron-coated sand and manganese-coated sand on the treatment of both As(III) and As(V). Chang YY, Kim KS, Jung JH, Yang JK, Lee SM. Water Sci Technol; 2007 Jul 31; 55(1-2):69-75. PubMed ID: 17305125 [Abstract] [Full Text] [Related]
19. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination. He Q, Hu Z, Jiang Y, Chang X, Tu Z, Zhang L. J Hazard Mater; 2010 Mar 15; 175(1-3):710-4. PubMed ID: 19926213 [Abstract] [Full Text] [Related]
20. Ozonation catalyzed by iron- and/or manganese-supported granular activated carbons for the treatment of phenol. Xiong W, Chen N, Feng C, Liu Y, Ma N, Deng J, Xing L, Gao Y. Environ Sci Pollut Res Int; 2019 Jul 15; 26(20):21022-21033. PubMed ID: 31119544 [Abstract] [Full Text] [Related] Page: [Next] [New Search]