These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 22991208

  • 1. Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.
    Ghorbel MT, Mokhtari A, Sheikh M, Angelini GD, Caputo M.
    Physiol Genomics; 2012 Nov 15; 44(22):1098-106. PubMed ID: 22991208
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Surgical reoxygenation injury of the myocardium in cyanotic patients: clinical relevance and therapeutic strategies by normoxic management during cardiopulmonary bypass.
    Morita K.
    Gen Thorac Cardiovasc Surg; 2012 Sep 15; 60(9):549-56. PubMed ID: 22782441
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in single-ventricle patients undergoing pediatric heart surgery.
    Caputo M, Mokhtari A, Miceli A, Ghorbel MT, Angelini GD, Parry AJ, Suleiman SM.
    J Thorac Cardiovasc Surg; 2014 Sep 15; 148(3):792-801.e8; discussion 800-1. PubMed ID: 25052821
    [Abstract] [Full Text] [Related]

  • 8. Does normoxemic cardiopulmonary bypass prevent myocardial reoxygenation injury in cyanotic children?
    Bulutcu FS, Bayindir O, Polat B, Yalcin Y, öZbek U, Cakali E.
    J Cardiothorac Vasc Anesth; 2002 Jun 15; 16(3):330-3. PubMed ID: 12073205
    [Abstract] [Full Text] [Related]

  • 9. Nitric-oxide-induced reoxygenation injury in the cyanotic immature heart is prevented by controlling oxygen content during initial reoxygenation.
    Ihnken K, Morita K, Buckberg GD, Winkelmann B, Schmitt M, Ignarro LJ, Sherman MP.
    Angiology; 1997 Mar 15; 48(3):189-202. PubMed ID: 9071194
    [Abstract] [Full Text] [Related]

  • 10. Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass.
    Raggi F, Cangelosi D, Becherini P, Blengio F, Morini M, Acquaviva M, Belli ML, Panizzon G, Cervo G, Varesio L, Eva A, Bosco MC.
    J Transl Med; 2020 Jan 10; 18(1):21. PubMed ID: 31924244
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Detrimental effects of cardiopulmonary bypass in cyanotic infants: preventing the reoxygenation injury.
    Allen BS, Rahman S, Ilbawi MN, Kronon M, Bolling KS, Halldorsson AO, Feinberg H.
    Ann Thorac Surg; 1997 Nov 10; 64(5):1381-7; discussion 1387-8. PubMed ID: 9386708
    [Abstract] [Full Text] [Related]

  • 16. Reduction of reoxygenation injury and nitric oxide production in the cyanotic immature heart by controlling pO2.
    Ihnken K, Morita K, Buckberg GD, Ignarro LJ, Beyersdorf F.
    Eur J Cardiothorac Surg; 1995 Nov 10; 9(8):410-8. PubMed ID: 7495584
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.