These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


557 related items for PubMed ID: 22992658

  • 1. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A, Palmal S, Jana NR.
    Nanoscale; 2012 Oct 21; 4(20):6649-57. PubMed ID: 22992658
    [Abstract] [Full Text] [Related]

  • 2. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A, Jana NR.
    ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):996-1003. PubMed ID: 25521159
    [Abstract] [Full Text] [Related]

  • 3. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
    Fan W, Lee YH, Pedireddy S, Zhang Q, Liu T, Ling XY.
    Nanoscale; 2014 May 07; 6(9):4843-51. PubMed ID: 24664184
    [Abstract] [Full Text] [Related]

  • 4. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H, Du M, Zhang M, Wang P, Bao S, Zou M, Fu Y, Yao J.
    Biosens Bioelectron; 2014 Apr 15; 54():91-101. PubMed ID: 24252765
    [Abstract] [Full Text] [Related]

  • 5. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M, Senlik E, Biskin E, Yavuz MS, Tamer U, Demirel G.
    Phys Chem Chem Phys; 2014 Mar 28; 16(12):5563-70. PubMed ID: 24514029
    [Abstract] [Full Text] [Related]

  • 6. Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based "turn-off" surface enhanced Raman scattering.
    Saha A, Jana NR.
    Anal Chem; 2013 Oct 01; 85(19):9221-8. PubMed ID: 23987745
    [Abstract] [Full Text] [Related]

  • 7. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM, Oh JW, Lee H, Suh YD.
    Acc Chem Res; 2016 Dec 20; 49(12):2746-2755. PubMed ID: 27993009
    [Abstract] [Full Text] [Related]

  • 8. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites.
    Lin TW, Wu HY, Tasi TT, Lai YH, Shen HH.
    Phys Chem Chem Phys; 2015 Jul 28; 17(28):18443-8. PubMed ID: 26106968
    [Abstract] [Full Text] [Related]

  • 9. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering.
    Kim YK, Han SW, Min DH.
    ACS Appl Mater Interfaces; 2012 Dec 28; 4(12):6545-51. PubMed ID: 23143878
    [Abstract] [Full Text] [Related]

  • 10. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS, Jones S, Pramanik A, Ray PC.
    Acc Chem Res; 2016 Dec 20; 49(12):2725-2735. PubMed ID: 27993003
    [Abstract] [Full Text] [Related]

  • 11. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G, Matikainen A, Stenberg P, Färm E, Li P, Ritala M, Vahimaa P, Honkanen S, Tan X.
    ACS Appl Mater Interfaces; 2015 Jun 03; 7(21):11452-9. PubMed ID: 25961706
    [Abstract] [Full Text] [Related]

  • 12. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.
    Adams SM, Campione S, Caldwell JD, Bezares FJ, Culbertson JC, Capolino F, Ragan R.
    Small; 2012 Jul 23; 8(14):2239-49. PubMed ID: 22528745
    [Abstract] [Full Text] [Related]

  • 13. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD, Glembocki OJ, Bezares FJ, Kariniemi MI, Niinistö JT, Hatanpää TT, Rendell RW, Ukaegbu M, Ritala MK, Prokes SM, Hosten CM, Leskelä MA, Kasica R.
    Opt Express; 2011 Dec 19; 19(27):26056-64. PubMed ID: 22274194
    [Abstract] [Full Text] [Related]

  • 14. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP, Chikkaraddy R, Tripathi RP, Dasgupta A, Kumar GV.
    Nat Commun; 2014 Jul 07; 5():4357. PubMed ID: 25000476
    [Abstract] [Full Text] [Related]

  • 15. Synthesis and characterization of a disulfide reporter molecule for enhancing pH measurements based on surface-enhanced Raman scattering.
    Lawson L, Huser T.
    Anal Chem; 2012 Apr 17; 84(8):3574-80. PubMed ID: 22455337
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application.
    Goh MS, Lee YH, Pedireddy S, Phang IY, Tjiu WW, Tan JM, Ling XY.
    Langmuir; 2012 Oct 09; 28(40):14441-9. PubMed ID: 22970778
    [Abstract] [Full Text] [Related]

  • 18. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N.
    Nanotechnology; 2012 Mar 23; 23(11):115501. PubMed ID: 22383452
    [Abstract] [Full Text] [Related]

  • 19. Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy.
    Liu CY, Liang KC, Chen W, Tu CH, Liu CP, Tzeng Y.
    Opt Express; 2011 Aug 29; 19(18):17092-8. PubMed ID: 21935070
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.