These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
351 related items for PubMed ID: 22993424
21. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M, Lin JS. Biochem Pharmacol; 2007 Apr 15; 73(8):1157-71. PubMed ID: 17288995 [Abstract] [Full Text] [Related]
22. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC. J Neurosci; 2017 Sep 27; 37(39):9574-9592. PubMed ID: 28874450 [Abstract] [Full Text] [Related]
23. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Curr Biol; 2021 Jan 25; 31(2):394-405.e4. PubMed ID: 33188746 [Abstract] [Full Text] [Related]
24. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. J Neurosci; 2011 Oct 26; 31(43):15340-51. PubMed ID: 22031880 [Abstract] [Full Text] [Related]
25. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. J Neurosci; 2002 Sep 01; 22(17):7695-711. PubMed ID: 12196593 [Abstract] [Full Text] [Related]
26. The hypnotic effect of propofol involves inhibition of GABAergic neurons in the lateral hypothalamus. Shi Y, Xiao D, Dai L, Si Y, Fang Q, Wei X. Neuroreport; 2019 Oct 09; 30(14):927-932. PubMed ID: 31469720 [Abstract] [Full Text] [Related]
27. Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons. Uygun DS, Ye Z, Zecharia AY, Harding EC, Yu X, Yustos R, Vyssotski AL, Brickley SG, Franks NP, Wisden W. J Neurosci; 2016 Nov 02; 36(44):11171-11184. PubMed ID: 27807161 [Abstract] [Full Text] [Related]
28. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. Neuroscience; 2010 May 19; 167(3):920-8. PubMed ID: 20188152 [Abstract] [Full Text] [Related]
29. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice. Kodani S, Soya S, Sakurai T. J Neurosci; 2017 Jul 26; 37(30):7164-7176. PubMed ID: 28642284 [Abstract] [Full Text] [Related]
30. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice. Takata Y, Oishi Y, Zhou XZ, Hasegawa E, Takahashi K, Cherasse Y, Sakurai T, Lazarus M. J Neurosci; 2018 Nov 21; 38(47):10080-10092. PubMed ID: 30282729 [Abstract] [Full Text] [Related]
31. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons. Xia JX, Xiong JX, Wang HK, Duan SM, Ye JN, Hu ZA. Neuroscience; 2012 Jan 10; 201():46-56. PubMed ID: 22119641 [Abstract] [Full Text] [Related]
32. An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. Hong ZY, Huang ZL, Qu WM, Eguchi N, Urade Y, Hayaishi O. J Neurochem; 2005 Mar 10; 92(6):1542-9. PubMed ID: 15748171 [Abstract] [Full Text] [Related]
33. Increase of histaminergic tuberomammillary neurons in narcolepsy. Valko PO, Gavrilov YV, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE. Ann Neurol; 2013 Dec 10; 74(6):794-804. PubMed ID: 24006291 [Abstract] [Full Text] [Related]
34. The Interaction Between the Ventrolateral Preoptic Nucleus and the Tuberomammillary Nucleus in Regulating the Sleep-Wakefulness Cycle. Cheng J, Wu F, Zhang M, Ding D, Fan S, Chen G, Zhang J, Wang L. Front Neurosci; 2020 Dec 10; 14():615854. PubMed ID: 33381012 [Abstract] [Full Text] [Related]
35. α(2A) adrenoceptor-mediated presynaptic inhibition of GABAergic transmission in rat tuberomammillary nucleus neurons. Nakamura M, Suk K, Lee MG, Jang IS. J Neurochem; 2013 Jun 10; 125(6):832-42. PubMed ID: 23570239 [Abstract] [Full Text] [Related]
36. Muscarinic M4 receptors regulate GABAergic transmission in rat tuberomammillary nucleus neurons. Nakamura M, Jang IS. Neuropharmacology; 2012 Nov 10; 63(6):936-44. PubMed ID: 22828639 [Abstract] [Full Text] [Related]
37. Periodic properties of the histaminergic system of the mouse brain. Rozov SV, Zant JC, Karlstedt K, Porkka-Heiskanen T, Panula P. Eur J Neurosci; 2014 Jan 10; 39(2):218-28. PubMed ID: 24438489 [Abstract] [Full Text] [Related]
38. [Regulation of the phases of the sleep-wakefulness cycle with histamine]. Diez-Garcia A, Garzon M. Rev Neurol; 2017 Mar 16; 64(6):267-277. PubMed ID: 28272728 [Abstract] [Full Text] [Related]
39. Gustatory habituation in Drosophila relies on rutabaga (adenylate cyclase)-dependent plasticity of GABAergic inhibitory neurons. Paranjpe P, Rodrigues V, VijayRaghavan K, Ramaswami M. Learn Mem; 2012 Nov 20; 19(12):627-35. PubMed ID: 23169996 [Abstract] [Full Text] [Related]