These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 23000888
21. Size-exclusion SPR sensor chip: application to detection of aggregation and disaggregation of biological particles. Terao K, Shimizu K, Miyanishi N, Shimamoto S, Suzuki T, Takao H, Oohira F. Analyst; 2012 May 07; 137(9):2192-8. PubMed ID: 22428153 [Abstract] [Full Text] [Related]
22. Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Yuan J, Oliver R, Li J, Lee J, Aguilar M, Wu Y. Biosens Bioelectron; 2007 Aug 30; 23(1):144-8. PubMed ID: 17485203 [Abstract] [Full Text] [Related]
23. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Jung J, Na K, Lee J, Kim KW, Hyun J. Anal Chim Acta; 2009 Sep 28; 651(1):91-7. PubMed ID: 19733741 [Abstract] [Full Text] [Related]
24. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging. Gobi KV, Tanaka H, Shoyama Y, Miura N. Biosens Bioelectron; 2004 Sep 15; 20(2):350-7. PubMed ID: 15308241 [Abstract] [Full Text] [Related]
25. A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance. Polonschii C, David S, Tombelli S, Mascini M, Gheorghiu M. Talanta; 2010 Mar 15; 80(5):2157-64. PubMed ID: 20152466 [Abstract] [Full Text] [Related]
26. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures. Kim DK, Kerman K, Hiep HM, Saito M, Yamamura S, Takamura Y, Kwon YS, Tamiya E. Anal Biochem; 2008 Aug 01; 379(1):1-7. PubMed ID: 18485275 [Abstract] [Full Text] [Related]
27. Modeling protein binding and elution over a chromatographic surface probed by surface plasmon resonance. Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. J Chromatogr A; 2010 Mar 26; 1217(13):2032-41. PubMed ID: 20171645 [Abstract] [Full Text] [Related]
28. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. J Am Chem Soc; 2004 Oct 06; 126(39):12669-76. PubMed ID: 15453801 [Abstract] [Full Text] [Related]
29. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Nath N, Chilkoti A. Anal Chem; 2004 Sep 15; 76(18):5370-8. PubMed ID: 15362894 [Abstract] [Full Text] [Related]
30. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Chang CC, Chiu NF, Lin DS, Chu-Su Y, Liang YH, Lin CW. Anal Chem; 2010 Feb 15; 82(4):1207-12. PubMed ID: 20102177 [Abstract] [Full Text] [Related]
31. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection. Pan MY, Lee KL, Wang L, Wei PK. Biosens Bioelectron; 2017 May 15; 91():580-587. PubMed ID: 28088751 [Abstract] [Full Text] [Related]
32. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G. Biosens Bioelectron; 2012 Feb 15; 32(1):297-9. PubMed ID: 22209331 [Abstract] [Full Text] [Related]
33. A new generation of sensors based on extraordinary optical transmission. Gordon R, Sinton D, Kavanagh KL, Brolo AG. Acc Chem Res; 2008 Aug 15; 41(8):1049-57. PubMed ID: 18605739 [Abstract] [Full Text] [Related]
34. Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme. Wong CL, Chen GC, Ng BK, Agarwal S, Lin Z, Chen P, Ho HP. Opt Express; 2011 Sep 26; 19(20):18965-78. PubMed ID: 21996838 [Abstract] [Full Text] [Related]
35. Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones. Wöllner K, Chen X, Kremmer E, Krämer PM. Anal Chim Acta; 2010 Dec 17; 683(1):113-8. PubMed ID: 21094389 [Abstract] [Full Text] [Related]
36. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. Li X, Tamada K, Baba A, Knoll W, Hara M. J Phys Chem B; 2006 Aug 17; 110(32):15755-62. PubMed ID: 16898722 [Abstract] [Full Text] [Related]
37. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method. Miura N, Sasaki M, Gobi KV, Kataoka C, Shoyama Y. Biosens Bioelectron; 2003 Jul 17; 18(7):953-9. PubMed ID: 12713919 [Abstract] [Full Text] [Related]
38. Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Sim HR, Wark AW, Lee HJ. Analyst; 2010 Oct 17; 135(10):2528-32. PubMed ID: 20725693 [Abstract] [Full Text] [Related]
39. Biological sensing using transmission surface plasmon resonance spectroscopy. Lahav M, Vaskevich A, Rubinstein I. Langmuir; 2004 Aug 31; 20(18):7365-7. PubMed ID: 15323475 [Abstract] [Full Text] [Related]
40. Localized surface plasmon resonance biosensor integrated with microfluidic chip. Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G. Biomed Microdevices; 2009 Aug 31; 11(4):893-901. PubMed ID: 19353272 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]