These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 23008168

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L, Wu Y, Hu T, Ma PX, Guo B.
    Acta Biomater; 2019 Sep 15; 96():175-187. PubMed ID: 31260823
    [Abstract] [Full Text] [Related]

  • 5. The promotion of axon extension in vitro using polymer-templated fibrin scaffolds.
    Scott JB, Afshari M, Kotek R, Saul JM.
    Biomaterials; 2011 Jul 15; 32(21):4830-9. PubMed ID: 21492932
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Neural responses to electrical stimulation on patterned silk films.
    Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL.
    J Biomed Mater Res A; 2013 Sep 15; 101(9):2559-72. PubMed ID: 23401351
    [Abstract] [Full Text] [Related]

  • 8. Engineering 3D-Bioplotted scaffolds to induce aligned extracellular matrix deposition for musculoskeletal soft tissue replacement.
    Warren PB, Huebner P, Spang JT, Shirwaiker RA, Fisher MB.
    Connect Tissue Res; 2017 Sep 15; 58(3-4):342-354. PubMed ID: 28026970
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP, Witte F, Tozzi G.
    J Microsc; 2020 Mar 15; 277(3):179-196. PubMed ID: 31701530
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. 3D scaffolds for brain tissue regeneration: architectural challenges.
    Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V.
    Biomater Sci; 2018 Oct 24; 6(11):2812-2837. PubMed ID: 30255869
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M, Fernández-Morales P, Gañán P, Zuluaga R, Kerguelen H, Ortiz I, Castro C.
    J Biomed Mater Res A; 2019 Feb 24; 107(2):348-359. PubMed ID: 30421501
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S.
    Carbohydr Polym; 2016 Apr 20; 140():104-12. PubMed ID: 26876833
    [Abstract] [Full Text] [Related]

  • 20. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold.
    Banglmaier RF, Sander EA, VandeVord PJ.
    Acta Biomater; 2015 Apr 20; 17():26-35. PubMed ID: 25653215
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.