These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
103 related items for PubMed ID: 23016831
1. Comment on the melting and decomposition of sugars. Roos YH, Franks F, Karel M, Labuza TP, Levine H, Mathlouthi M, Reid D, Shalaev E, Slade L. J Agric Food Chem; 2012 Oct 17; 60(41):10359-62; author reply 10363-71. PubMed ID: 23016831 [No Abstract] [Full Text] [Related]
2. Co-melting behaviour of sucrose, glucose & fructose. Wang Y, Truong T, Li H, Bhandari B. Food Chem; 2019 Mar 01; 275():292-298. PubMed ID: 30724199 [Abstract] [Full Text] [Related]
3. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)? Lee JW, Thomas LC, Schmidt SJ. J Agric Food Chem; 2011 Apr 13; 59(7):3306-10. PubMed ID: 21417276 [Abstract] [Full Text] [Related]
4. Melting behaviour of D-sucrose, D-glucose and D-fructose. Hurtta M, Pitkänen I, Knuutinen J. Carbohydr Res; 2004 Sep 13; 339(13):2267-73. PubMed ID: 15337455 [Abstract] [Full Text] [Related]
5. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). Lee JW, Thomas LC, Schmidt SJ. J Agric Food Chem; 2011 Jan 26; 59(2):684-701. PubMed ID: 21175199 [Abstract] [Full Text] [Related]
6. Impact of melting conditions of sucrose on its glass transition temperature. Vanhal I, Blond G. J Agric Food Chem; 1999 Oct 26; 47(10):4285-90. PubMed ID: 10552803 [Abstract] [Full Text] [Related]
7. Experimental data and predictive equation of the specific heat capacity of fruit juice model systems measured with differential scanning calorimetry. Sánchez-Romero MA, García-Coronado P, Rivera-Bautista C, González-García R, Grajales-Lagunes A, Abud-Archila M, Ruiz-Cabrera MA. J Food Sci; 2021 May 26; 86(5):1946-1962. PubMed ID: 33844286 [Abstract] [Full Text] [Related]
9. Investigation of thermal decomposition as the kinetic process that causes the loss of crystalline structure in sucrose using a chemical analysis approach (part II). Lee JW, Thomas LC, Jerrell J, Feng H, Cadwallader KR, Schmidt SJ. J Agric Food Chem; 2011 Jan 26; 59(2):702-12. PubMed ID: 21175200 [Abstract] [Full Text] [Related]
10. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bower S, Wickramasinghe R, Nagle NJ, Schell DJ. Bioresour Technol; 2008 Oct 26; 99(15):7354-62. PubMed ID: 17616458 [Abstract] [Full Text] [Related]
11. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. Perez Locas C, Yaylayan VA. J Agric Food Chem; 2008 Aug 13; 56(15):6717-23. PubMed ID: 18611024 [Abstract] [Full Text] [Related]
12. Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose. Saavedra-Leos MZ, Grajales-Lagunes A, González-García R, Toxqui-Terán A, Pérez-García SA, Abud-Archila MA, Ruiz-Cabrera MA. J Food Sci; 2012 May 13; 77(5):E118-26. PubMed ID: 23163938 [Abstract] [Full Text] [Related]
13. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: Chemical analyses. Jiang B, Liu Y, Bhandari B, Zhou W. J Agric Food Chem; 2008 Jul 09; 56(13):5138-47. PubMed ID: 18553889 [Abstract] [Full Text] [Related]
14. [Effect of sugars on the hydration of serum albumin at low temperatures]. Turov VV, Galagan NP, Rugal' AA. Biofizika; 2007 Jul 09; 52(5):780-4. PubMed ID: 17969908 [Abstract] [Full Text] [Related]
15. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC-RI optimized method. Filip M, Vlassa M, Coman V, Halmagyi A. Food Chem; 2016 May 15; 199():653-9. PubMed ID: 26776021 [Abstract] [Full Text] [Related]
16. Wetting effect on optical sum frequency generation (SFG) spectra of d-glucose, d-fructose, and sucrose. Hieu HC, Li H, Miyauchi Y, Mizutani G, Fujita N, Nakamura Y. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar 05; 138():834-9. PubMed ID: 25582568 [Abstract] [Full Text] [Related]
17. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Nobre C, Santos MJ, Dominguez A, Torres D, Rocha O, Peres AM, Rocha I, Ferreira EC, Teixeira JA, Rodrigues LR. Anal Chim Acta; 2009 Nov 03; 654(1):71-6. PubMed ID: 19850171 [Abstract] [Full Text] [Related]
18. DSC study of sucrose melting. Beckett ST, Francesconi MG, Geary PM, Mackenzie G, Maulny AP. Carbohydr Res; 2006 Nov 06; 341(15):2591-9. PubMed ID: 16916498 [Abstract] [Full Text] [Related]
19. Observation of liquid-crystal formation during melting of D-(+)-glucose. Bagheri SR, Shaw JM. J Agric Food Chem; 2011 Dec 14; 59(23):12605-9. PubMed ID: 22026437 [Abstract] [Full Text] [Related]
20. [Research for thermal stability of fructose, glucose, 5-hydroxymethyl-2-furfural during the process of refining honey of honeyed pill]. Xian JC, Zhang N, Feng Y, Hong YL. Zhong Yao Cai; 2011 Sep 14; 34(9):1434-7. PubMed ID: 22260013 [Abstract] [Full Text] [Related] Page: [Next] [New Search]