These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 23017897
1. Identification of candidate genes related to rice grain weight under high-temperature stress. Liao JL, Zhang HY, Liu JB, Zhong PA, Huang YJ. Plant Sci; 2012 Nov; 196():32-43. PubMed ID: 23017897 [Abstract] [Full Text] [Related]
2. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. Liao JL, Zhou HW, Peng Q, Zhong PA, Zhang HY, He C, Huang YJ. BMC Genomics; 2015 Jan 23; 16(1):18. PubMed ID: 25928563 [Abstract] [Full Text] [Related]
3. Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. Dinari A, Niazi A, Afsharifar AR, Ramezani A. PLoS One; 2013 Jan 23; 8(1):e52757. PubMed ID: 23341906 [Abstract] [Full Text] [Related]
4. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ. J Exp Bot; 2014 Feb 23; 65(2):655-71. PubMed ID: 24376254 [Abstract] [Full Text] [Related]
5. Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. Rodríguez M, Canales E, Borroto CJ, Carmona E, López J, Pujol M, Borrás-Hidalgo O. J Plant Physiol; 2006 Mar 23; 163(5):577-84. PubMed ID: 16473663 [Abstract] [Full Text] [Related]
6. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress. Amini S, Maali-Amiri R, Mohammadi R, Kazemi-Shahandashti SS. Plant Physiol Biochem; 2017 Feb 23; 111():39-49. PubMed ID: 27907856 [Abstract] [Full Text] [Related]
7. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Yang DH, Kwak KJ, Kim MK, Park SJ, Yang KY, Kang H. Plant Sci; 2014 Jan 23; 214():106-12. PubMed ID: 24268168 [Abstract] [Full Text] [Related]
8. Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE. Mol Biol Rep; 2011 Jan 23; 38(1):75-81. PubMed ID: 20300860 [Abstract] [Full Text] [Related]
9. Isolation and identification of a gene in response to rice blast disease in rice. Zheng X, Chen X, Zhang X, Lin Z, Shang J, Xu J, Zhai W, Zhu L. Plant Mol Biol; 2004 Jan 23; 54(1):99-109. PubMed ID: 15159637 [Abstract] [Full Text] [Related]
10. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M. Mol Biotechnol; 2008 Nov 23; 40(3):241-51. PubMed ID: 18592419 [Abstract] [Full Text] [Related]
11. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Xue DW, Jiang H, Hu J, Zhang XQ, Guo LB, Zeng DL, Dong GJ, Sun GC, Qian Q. Plant Physiol Biochem; 2012 Dec 23; 61():46-53. PubMed ID: 23037947 [Abstract] [Full Text] [Related]
12. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Zeng Z, Xiong F, Yu X, Gong X, Luo J, Jiang Y, Kuang H, Gao B, Niu X, Liu Y. Plant Physiol Biochem; 2016 Dec 23; 109():62-71. PubMed ID: 27639962 [Abstract] [Full Text] [Related]
13. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes. Dey A, Samanta MK, Gayen S, Sen SK, Maiti MK. PLoS One; 2016 Dec 23; 11(3):e0150763. PubMed ID: 26959651 [Abstract] [Full Text] [Related]
14. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B. Physiol Plant; 2015 Jul 23; 154(3):381-94. PubMed ID: 25263631 [Abstract] [Full Text] [Related]
15. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Fang Y, You J, Xie K, Xie W, Xiong L. Mol Genet Genomics; 2008 Dec 23; 280(6):547-63. PubMed ID: 18813954 [Abstract] [Full Text] [Related]
16. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice. Liu Y, Liu X, Wang X, Gao K, Qi W, Ren H, Hu H, Sun D, Bai J, Zheng S. BMC Plant Biol; 2020 Nov 11; 20(1):514. PubMed ID: 33176681 [Abstract] [Full Text] [Related]
17. Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage. Guo YQ, Tian ZY, Qin GY, Yan DL, Zhang J, Zhou WZ, Qin P. Genetica; 2009 Nov 11; 137(2):189-99. PubMed ID: 19588254 [Abstract] [Full Text] [Related]
18. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M. J Plant Physiol; 2013 Dec 15; 170(18):1579-84. PubMed ID: 23910376 [Abstract] [Full Text] [Related]
19. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. J Exp Bot; 2021 Apr 02; 72(8):2947-2964. PubMed ID: 33476364 [Abstract] [Full Text] [Related]
20. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T. BMC Genomics; 2011 Jul 31; 12():384. PubMed ID: 21801454 [Abstract] [Full Text] [Related] Page: [Next] [New Search]