These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 23027629

  • 1. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors.
    Lhuillier E, Keuleyan S, Zolotavin P, Guyot-Sionnest P.
    Adv Mater; 2013 Jan 04; 25(1):137-41. PubMed ID: 23027629
    [Abstract] [Full Text] [Related]

  • 2. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature.
    Xia K, Gao XD, Fei GT, Xu SH, Liang YF, Qu XX.
    ACS Appl Mater Interfaces; 2024 Apr 26. PubMed ID: 38669621
    [Abstract] [Full Text] [Related]

  • 3. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM, Tang X, Guyot-Sionnest P.
    ACS Nano; 2018 Jul 24; 12(7):7264-7271. PubMed ID: 29975502
    [Abstract] [Full Text] [Related]

  • 4. MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm.
    Huo N, Gupta S, Konstantatos G.
    Adv Mater; 2017 May 24; 29(17):. PubMed ID: 28247438
    [Abstract] [Full Text] [Related]

  • 5. Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors.
    Yang J, Hu H, Lv Y, Yuan M, Wang B, He Z, Chen S, Wang Y, Hu Z, Yu M, Zhang X, He J, Zhang J, Liu H, Hsu HY, Tang J, Song H, Lan X.
    Nano Lett; 2022 Apr 27; 22(8):3465-3472. PubMed ID: 35435694
    [Abstract] [Full Text] [Related]

  • 6. Uncooled High Detectivity Mid-Infrared Photoconductor Using HgTe Quantum Dots and Nanoantennas.
    Caillas A, Guyot-Sionnest P.
    ACS Nano; 2024 Mar 26; 18(12):8952-8960. PubMed ID: 38466148
    [Abstract] [Full Text] [Related]

  • 7. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M, Yang J, Zhang X, Yuan M, Zhang J, Gao L, Tang J, Lan X.
    Adv Mater; 2024 Jul 26; 36(27):e2311830. PubMed ID: 38501495
    [Abstract] [Full Text] [Related]

  • 8. Synergism in Binary Nanocrystals Enables Top-Illuminated HgTe Colloidal Quantum Dot Short-Wave Infrared Imager.
    Wang B, Yuan M, Liu J, Zhang X, Liu J, Yang J, Gao L, Zhang J, Tang J, Lan X.
    Nano Lett; 2024 Aug 07; 24(31):9583-9590. PubMed ID: 39041791
    [Abstract] [Full Text] [Related]

  • 9. Very long wave infrared quantum dot photodetector up to 18 μm.
    Xue X, Hao Q, Chen M.
    Light Sci Appl; 2024 Apr 12; 13(1):89. PubMed ID: 38609412
    [Abstract] [Full Text] [Related]

  • 10. Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films.
    Chen M, Guyot-Sionnest P.
    ACS Nano; 2017 Apr 25; 11(4):4165-4173. PubMed ID: 28314094
    [Abstract] [Full Text] [Related]

  • 11. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.
    Adinolfi V, Kramer IJ, Labelle AJ, Sutherland BR, Hoogland S, Sargent EH.
    ACS Nano; 2015 Jan 27; 9(1):356-62. PubMed ID: 25558809
    [Abstract] [Full Text] [Related]

  • 12. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices.
    Tang X, Ackerman MM, Guyot-Sionnest P.
    ACS Nano; 2018 Jul 24; 12(7):7362-7370. PubMed ID: 29985583
    [Abstract] [Full Text] [Related]

  • 13. Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors.
    Sergeeva KA, Hu S, Sokolova AV, Portniagin AS, Chen D, Kershaw SV, Rogach AL.
    Adv Mater; 2024 Apr 24; 36(17):e2306518. PubMed ID: 37572367
    [Abstract] [Full Text] [Related]

  • 14. Room-Temperature 15% Efficient Mid-Infrared HgTe Colloidal Quantum Dot Photodiodes.
    Peterson JC, Guyot-Sionnest P.
    ACS Appl Mater Interfaces; 2023 Apr 19; 15(15):19163-19169. PubMed ID: 37022942
    [Abstract] [Full Text] [Related]

  • 15. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R, Lejay M, Fan JZ, Choi MJ, Kinge S, Hoogland S, Fabritius T, García de Arquer FP, Sargent EH.
    ACS Nano; 2019 Oct 22; 13(10):11988-11995. PubMed ID: 31545597
    [Abstract] [Full Text] [Related]

  • 16. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm.
    Zhang H, Peterson JC, Guyot-Sionnest P.
    ACS Nano; 2023 Apr 25; 17(8):7530-7538. PubMed ID: 37027314
    [Abstract] [Full Text] [Related]

  • 17. Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity.
    Tang X, Ackerman MM, Shen G, Guyot-Sionnest P.
    Small; 2019 Mar 25; 15(12):e1804920. PubMed ID: 30767425
    [Abstract] [Full Text] [Related]

  • 18. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared.
    De Iacovo A, Venettacci C, Colace L, Scopa L, Foglia S.
    Sci Rep; 2016 Nov 25; 6():37913. PubMed ID: 27885269
    [Abstract] [Full Text] [Related]

  • 19. Understanding the Growth Mechanism of HgTe Colloidal Quantum Dots through Bilateral Injection.
    Yang H, Zhang Q, Chang R, Wu Z, Shen H.
    Inorg Chem; 2024 Apr 08; 63(14):6231-6238. PubMed ID: 38529948
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.