These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 23029353
1. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. Machida T, Ishibashi A, Kirino A, Sato J, Kawasaki S, Niimura Y, Honjoh K, Miyamoto T. PLoS One; 2012; 7(9):e45988. PubMed ID: 23029353 [Abstract] [Full Text] [Related]
2. Expression pattern of a chloroplast NADPH-dependent thioredoxin reductase in Chlorella vulgaris during hardening and its interaction with 2-Cys peroxiredoxin. Machida T, Kato E, Ishibashi A, Sato J, Kawasaki S, Niimura Y, Honjoh K, Miyamoto T. Biosci Biotechnol Biochem; 2009 Mar 23; 73(3):695-701. PubMed ID: 19270395 [Abstract] [Full Text] [Related]
3. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. Puerto-Galán L, Pérez-Ruiz JM, Guinea M, Cejudo FJ. J Exp Bot; 2015 May 23; 66(10):2957-66. PubMed ID: 25560178 [Abstract] [Full Text] [Related]
4. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ. J Exp Bot; 2010 Sep 23; 61(14):4043-54. PubMed ID: 20616155 [Abstract] [Full Text] [Related]
5. An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Pulido P, Cazalis R, Cejudo FJ. Plant J; 2009 Jan 23; 57(1):132-45. PubMed ID: 18786001 [Abstract] [Full Text] [Related]
6. Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x. Bernal-Bayard P, Ojeda V, Hervás M, Cejudo FJ, Navarro JA, Velázquez-Campoy A, Pérez-Ruiz JM. FEBS Lett; 2014 Nov 28; 588(23):4342-7. PubMed ID: 25448674 [Abstract] [Full Text] [Related]
7. Functional Significance of NADPH-Thioredoxin Reductase C in the Antioxidant Defense System of Cyanobacterium Anabaena sp. PCC 7120. Mihara S, Yoshida K, Higo A, Hisabori T. Plant Cell Physiol; 2017 Jan 01; 58(1):86-94. PubMed ID: 28011872 [Abstract] [Full Text] [Related]
8. NADPH Thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana. Kirchsteiger K, Pulido P, González M, Cejudo FJ. Mol Plant; 2009 Mar 01; 2(2):298-307. PubMed ID: 19825615 [Abstract] [Full Text] [Related]
9. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ. Proc Natl Acad Sci U S A; 2017 Nov 07; 114(45):12069-12074. PubMed ID: 29078290 [Abstract] [Full Text] [Related]
10. The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive. Pérez-Ruiz JM, González M, Spínola MC, Sandalio LM, Cejudo FJ. Mol Plant; 2009 May 07; 2(3):457-67. PubMed ID: 19825629 [Abstract] [Full Text] [Related]
11. Electron transfer pathways and dynamics of chloroplast NADPH-dependent thioredoxin reductase C (NTRC). Bernal-Bayard P, Hervás M, Cejudo FJ, Navarro JA. J Biol Chem; 2012 Sep 28; 287(40):33865-72. PubMed ID: 22833674 [Abstract] [Full Text] [Related]
12. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR. Mol Plant Microbe Interact; 2012 Mar 28; 25(3):294-306. PubMed ID: 22112219 [Abstract] [Full Text] [Related]
13. Molecular characterization of low-temperature-inducible NTR-C in Chlorella vulgaris. Machida T, Kato E, Ishibashi A, Ohashi N, Honjoh K, Miyamoto T. Nucleic Acids Symp Ser (Oxf); 2007 Mar 28; (51):463-4. PubMed ID: 18029787 [Abstract] [Full Text] [Related]
14. Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4. Limauro D, Pedone E, Galdi I, Bartolucci S. FEBS J; 2008 May 28; 275(9):2067-77. PubMed ID: 18355320 [Abstract] [Full Text] [Related]
15. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. Redox Biol; 2023 Jul 28; 63():102731. PubMed ID: 37245286 [Abstract] [Full Text] [Related]
16. 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. Ojeda V, Pérez-Ruiz JM, Cejudo FJ. Mol Plant; 2018 Nov 05; 11(11):1377-1388. PubMed ID: 30292682 [Abstract] [Full Text] [Related]
17. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Sueoka K, Yamazaki T, Hiyama T, Nakamoto H. Biochem Biophys Res Commun; 2009 Mar 13; 380(3):520-4. PubMed ID: 19250645 [Abstract] [Full Text] [Related]
18. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. Banerjee M, Chakravarty D, Ballal A. BMC Plant Biol; 2015 Feb 21; 15():60. PubMed ID: 25849452 [Abstract] [Full Text] [Related]
19. Activity assay of mammalian 2-cys peroxiredoxins using yeast thioredoxin reductase system. Kim JA, Park S, Kim K, Rhee SG, Kang SW. Anal Biochem; 2005 Mar 15; 338(2):216-23. PubMed ID: 15745741 [Abstract] [Full Text] [Related]
20. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG. J Biol Chem; 2002 Oct 11; 277(41):38029-36. PubMed ID: 12161445 [Abstract] [Full Text] [Related] Page: [Next] [New Search]