These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 23033259

  • 1. Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon-air batteries.
    Jakes P, Cohn G, Ein-Eli Y, Scheiba F, Ehrenberg H, Eichel RA.
    ChemSusChem; 2012 Nov; 5(11):2278-85. PubMed ID: 23033259
    [Abstract] [Full Text] [Related]

  • 2. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.
    Cohn G, Eichel RA, Ein-Eli Y.
    Phys Chem Chem Phys; 2013 Mar 07; 15(9):3256-63. PubMed ID: 23348151
    [Abstract] [Full Text] [Related]

  • 3. Remarkable impact of water on the discharge performance of a silicon-air battery.
    Cohn G, Macdonald DD, Ein-Eli Y.
    ChemSusChem; 2011 Aug 22; 4(8):1124-9. PubMed ID: 21766461
    [Abstract] [Full Text] [Related]

  • 4. Virus-enabled silicon anode for lithium-ion batteries.
    Chen X, Gerasopoulos K, Guo J, Brown A, Wang C, Ghodssi R, Culver JN.
    ACS Nano; 2010 Sep 28; 4(9):5366-72. PubMed ID: 20707328
    [Abstract] [Full Text] [Related]

  • 5. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation.
    Abel PR, Lin YM, Celio H, Heller A, Mullins CB.
    ACS Nano; 2012 Mar 27; 6(3):2506-16. PubMed ID: 22372404
    [Abstract] [Full Text] [Related]

  • 6. High-performance lithium battery anodes using silicon nanowires.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y.
    Nat Nanotechnol; 2008 Jan 27; 3(1):31-5. PubMed ID: 18654447
    [Abstract] [Full Text] [Related]

  • 7. Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation.
    Etacheri V, Geiger U, Gofer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D.
    Langmuir; 2012 Apr 10; 28(14):6175-84. PubMed ID: 22428945
    [Abstract] [Full Text] [Related]

  • 8. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W, Kumta PN.
    ACS Nano; 2010 Apr 27; 4(4):2233-41. PubMed ID: 20364846
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W, Harada D, Oyaizu K, Nishide H.
    J Am Chem Soc; 2011 Dec 14; 133(49):19839-43. PubMed ID: 22011047
    [Abstract] [Full Text] [Related]

  • 11. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries.
    Jerliu B, Dörrer L, Hüger E, Borchardt G, Steitz R, Geckle U, Oberst V, Bruns M, Schneider O, Schmidt H.
    Phys Chem Chem Phys; 2013 May 28; 15(20):7777-84. PubMed ID: 23598350
    [Abstract] [Full Text] [Related]

  • 12. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N.
    Small; 2009 Oct 28; 5(20):2236-42. PubMed ID: 19739146
    [Abstract] [Full Text] [Related]

  • 13. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F, Chen J.
    Chem Soc Rev; 2012 Mar 21; 41(6):2172-92. PubMed ID: 22254234
    [Abstract] [Full Text] [Related]

  • 14. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT, Jeong S, Cho J.
    Acc Chem Res; 2013 May 21; 46(5):1161-70. PubMed ID: 22509931
    [Abstract] [Full Text] [Related]

  • 15. Si/Ge double-layered nanotube array as a lithium ion battery anode.
    Song T, Cheng H, Choi H, Lee JH, Han H, Lee DH, Yoo DS, Kwon MS, Choi JM, Doo SG, Chang H, Xiao J, Huang Y, Park WI, Chung YC, Kim H, Rogers JA, Paik U.
    ACS Nano; 2012 Jan 24; 6(1):303-9. PubMed ID: 22142021
    [Abstract] [Full Text] [Related]

  • 16. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.
    Jiang R.
    Rev Sci Instrum; 2007 Jul 24; 78(7):072209. PubMed ID: 17672740
    [Abstract] [Full Text] [Related]

  • 17. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG, Wang X, Mayes RT, Dai S.
    ChemSusChem; 2012 Oct 24; 5(10):2079-85. PubMed ID: 22847977
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries.
    Murase M, Yabuuchi N, Han ZJ, Son JY, Cui YT, Oji H, Komaba S.
    ChemSusChem; 2012 Dec 24; 5(12):2307-11. PubMed ID: 23169703
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.