These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 23039425
1. The effect of static pressure on the strength of inertial cavitation events. Bader KB, Mobley J, Church CC, Gaitan DF. J Acoust Soc Am; 2012 Oct; 132(4):2286-91. PubMed ID: 23039425 [Abstract] [Full Text] [Related]
2. The effect of static pressure on the inertial cavitation threshold. Bader KB, Raymond JL, Mobley J, Church CC, Felipe Gaitan D. J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195 [Abstract] [Full Text] [Related]
3. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K. J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995 [Abstract] [Full Text] [Related]
4. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA, Ikeda T, Matsumoto Y. Phys Med Biol; 2005 Oct 21; 50(20):4797-809. PubMed ID: 16204873 [Abstract] [Full Text] [Related]
5. Transient cavitation in high-quality-factor resonators at high static pressures. Gaitan DF, Tessien RA, Hiller RA, Gutierrez J, Scott C, Tardif H, Callahan B, Matula TJ, Crum LA, Holt RG, Church CC, Raymond JL. J Acoust Soc Am; 2010 Jun 21; 127(6):3456-65. PubMed ID: 20550245 [Abstract] [Full Text] [Related]
6. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam. Manzi NJ, Chitnis PV, Holt RG, Roy RA, Cleveland RO, Riemer B, Wendel M. J Acoust Soc Am; 2010 Apr 21; 127(4):2231-9. PubMed ID: 20370004 [Abstract] [Full Text] [Related]
8. Liquid compressibility effects during the collapse of a single cavitating bubble. Fuster D, Dopazo C, Hauke G. J Acoust Soc Am; 2011 Jan 21; 129(1):122-31. PubMed ID: 21302994 [Abstract] [Full Text] [Related]
10. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone. Kang G, Cho SC, Coleman AJ, Choi MJ. J Acoust Soc Am; 2014 Mar 21; 135(3):1139-48. PubMed ID: 24606257 [Abstract] [Full Text] [Related]
13. Investigation of noninertial cavitation produced by an ultrasonic horn. Birkin PR, Offin DG, Vian CJ, Leighton TG, Maksimov AO. J Acoust Soc Am; 2011 Nov 21; 130(5):3297-308. PubMed ID: 22088002 [Abstract] [Full Text] [Related]
14. Bubble dynamics in a standing sound field: the bubble habitat. Koch P, Kurz T, Parlitz U, Lauterborn W. J Acoust Soc Am; 2011 Nov 21; 130(5):3370-8. PubMed ID: 22088010 [Abstract] [Full Text] [Related]
16. The dynamics of the aspheric encapsulated bubble. Shao W, Chen W. J Acoust Soc Am; 2013 Jan 21; 133(1):119-26. PubMed ID: 23297888 [Abstract] [Full Text] [Related]
17. Quantitative observations of cavitation activity in a viscoelastic medium. Collin JR, Coussios CC. J Acoust Soc Am; 2011 Nov 21; 130(5):3289-96. PubMed ID: 22088001 [Abstract] [Full Text] [Related]
18. Passive cavitation mapping with temporal sparsity constraint. Gyöngy M, Coviello CM. J Acoust Soc Am; 2011 Nov 21; 130(5):3489-97. PubMed ID: 22088024 [Abstract] [Full Text] [Related]
19. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Canseco G, de Icaza-Herrera M, Fernández F, Loske AM. Ultrasonics; 2011 Oct 21; 51(7):803-10. PubMed ID: 21459398 [Abstract] [Full Text] [Related]