These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 23046275

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone.
    Leng H, Lu M, Wan X.
    Physiol Plant; 2013 Mar; 147(3):329-39. PubMed ID: 22686493
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?
    Shatil-Cohen A, Attia Z, Moshelion M.
    Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747
    [Abstract] [Full Text] [Related]

  • 9. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).
    Pou A, Flexas J, Alsina Mdel M, Bota J, Carambula C, de Herralde F, Galmés J, Lovisolo C, Jiménez M, Ribas-Carbó M, Rusjan D, Secchi F, Tomàs M, Zsófi Z, Medrano H.
    Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.
    Tombesi S, Nardini A, Farinelli D, Palliotti A.
    Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress.
    Rodríguez-Gamir J, Xue J, Clearwater MJ, Meason DF, Clinton PW, Domec JC.
    Plant Cell Environ; 2019 Feb; 42(2):717-729. PubMed ID: 30307040
    [Abstract] [Full Text] [Related]

  • 17. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss.
    Liu X, Dong X, Liu Z, Shi Z, Jiang Y, Qi M, Xu T, Li T.
    Plant Mol Biol; 2016 Oct; 92(3):313-36. PubMed ID: 27542006
    [Abstract] [Full Text] [Related]

  • 18. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P, Botía P, Keller M.
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.
    Laur J, Hacke UG.
    PLoS One; 2014 Sep; 9(11):e111751. PubMed ID: 25406088
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.