These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


686 related items for PubMed ID: 23052244

  • 1. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.
    Ramanathan C, Khan SK, Kathale ND, Xu H, Liu AC.
    J Vis Exp; 2012 Sep 27; (67):. PubMed ID: 23052244
    [Abstract] [Full Text] [Related]

  • 2. Developing Mammalian Cellular Clock Models Using Firefly Luciferase Reporter.
    Ramanathan C, Liu AC.
    Methods Mol Biol; 2018 Sep 27; 1755():49-64. PubMed ID: 29671262
    [Abstract] [Full Text] [Related]

  • 3. Slice preparation, organotypic tissue culturing and luciferase recording of clock gene activity in the suprachiasmatic nucleus.
    Savelyev SA, Larsson KC, Johansson AS, Lundkvist GB.
    J Vis Exp; 2011 Feb 15; (48):. PubMed ID: 21372784
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A non-cell-autonomous circadian rhythm of bioluminescence reporter activities in individual duckweed cells.
    Watanabe E, Muranaka T, Nakamura S, Isoda M, Horikawa Y, Aiso T, Ito S, Oyama T.
    Plant Physiol; 2023 Aug 31; 193(1):677-688. PubMed ID: 37042358
    [Abstract] [Full Text] [Related]

  • 9. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, Welsh DK.
    eNeuro; 2017 Aug 31; 4(4):. PubMed ID: 28828400
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Detection of Uncoupled Circadian Rhythms in Individual Cells of Lemna minor using a Dual-Color Bioluminescence Monitoring System.
    Watanabe E, Isoda M, Muranaka T, Ito S, Oyama T.
    Plant Cell Physiol; 2021 Oct 01; 62(5):815-826. PubMed ID: 33693842
    [Abstract] [Full Text] [Related]

  • 16. Cellular circadian clocks in mood disorders.
    McCarthy MJ, Welsh DK.
    J Biol Rhythms; 2012 Oct 01; 27(5):339-52. PubMed ID: 23010657
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators.
    Landgraf D, Wang LL, Diemer T, Welsh DK.
    PLoS Genet; 2016 Feb 01; 12(2):e1005882. PubMed ID: 26895328
    [Abstract] [Full Text] [Related]

  • 19. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue.
    Beesley S, Noguchi T, Welsh DK.
    PLoS One; 2016 Feb 01; 11(7):e0159618. PubMed ID: 27459195
    [Abstract] [Full Text] [Related]

  • 20. Collection of Mouse Brain Slices for Bioluminescence Imaging of Circadian Clock Networks.
    Evans JA, Welsh DK, Davidson AJ.
    Methods Mol Biol; 2021 Feb 01; 2130():287-294. PubMed ID: 33284452
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.