These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 23059201
1. Triazole-acridine conjugates: redox mechanisms and in situ electrochemical evaluation of interaction with double-stranded DNA. Pontinha AD, Sparapani S, Neidle S, Oliveira-Brett AM. Bioelectrochemistry; 2013 Feb; 89():50-6. PubMed ID: 23059201 [Abstract] [Full Text] [Related]
2. Triazole-linked phenyl derivatives: redox mechanisms and in situ electrochemical evaluation of interaction with dsDNA. Pontinha AD, Lombardo CM, Neidle S, Oliveira-Brett AM. Bioelectrochemistry; 2015 Feb; 101():97-105. PubMed ID: 25194950 [Abstract] [Full Text] [Related]
5. An electrochemical study of 9-chloroacridine redox behavior and its interaction with double-stranded DNA. Rupar J, Aleksić MM, Dobričić V, Brborić J, Čudina O. Bioelectrochemistry; 2020 Oct; 135():107579. PubMed ID: 32534381 [Abstract] [Full Text] [Related]
6. In situ evaluation of anticancer drug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFM characterization. Pontinha AD, Jorge SM, Chiorcea Paquim AM, Diculescu VC, Oliveira-Brett AM. Phys Chem Chem Phys; 2011 Mar 28; 13(12):5227-34. PubMed ID: 21359288 [Abstract] [Full Text] [Related]
7. Electrochemical oxidation of ochratoxin A at a glassy carbon electrode and in situ evaluation of the interaction with deoxyribonucleic acid using an electrochemical deoxyribonucleic acid-biosensor. Oliveira SC, Diculescu VC, Palleschi G, Compagnone D, Oliveira-Brett AM. Anal Chim Acta; 2007 Apr 11; 588(2):283-91. PubMed ID: 17386822 [Abstract] [Full Text] [Related]
11. Electrochemical study of quercetin-DNA interactions: part II. In situ sensing with DNA biosensors. Oliveira-Brett AM, Diculescu VC. Bioelectrochemistry; 2004 Sep 11; 64(2):143-50. PubMed ID: 15296787 [Abstract] [Full Text] [Related]
12. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals. Hájková A, Barek J, Vyskočil V. Bioelectrochemistry; 2017 Aug 11; 116():1-9. PubMed ID: 28314167 [Abstract] [Full Text] [Related]
13. Electrochemical DNA nano-biosensor for the study of spermidine-DNA interaction. Mehdinia A, Kazemi SH, Bathaie SZ, Alizadeh A, Shamsipur M, Mousavi MF. J Pharm Biomed Anal; 2009 Apr 05; 49(3):587-93. PubMed ID: 19186020 [Abstract] [Full Text] [Related]
14. In situ electrochemical evaluation of anticancer drug temozolomide and its metabolites-DNA interaction. Lopes IC, Oliveira SC, Oliveira-Brett AM. Anal Bioanal Chem; 2013 Apr 05; 405(11):3783-90. PubMed ID: 23150052 [Abstract] [Full Text] [Related]
15. In situ evaluation of chromium-DNA damage using a DNA-electrochemical biosensor. Oliveira SC, Oliveira-Brett AM. Anal Bioanal Chem; 2010 Oct 05; 398(4):1633-41. PubMed ID: 20686755 [Abstract] [Full Text] [Related]
17. An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA. Tang W, Zhang M, Li W, Zeng X. Talanta; 2014 Sep 05; 127():262-8. PubMed ID: 24913886 [Abstract] [Full Text] [Related]
18. In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor. Oliveira SC, Corduneanu O, Oliveira-Brett AM. Bioelectrochemistry; 2008 Feb 05; 72(1):53-8. PubMed ID: 18160350 [Abstract] [Full Text] [Related]
19. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M, Zhai Y, Dong S. Anal Chem; 2009 Jul 15; 81(14):5603-13. PubMed ID: 19522529 [Abstract] [Full Text] [Related]