These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


423 related items for PubMed ID: 23065677

  • 21. Immuno-cross reactivity of transglutaminase and cornification marker proteins in the epidermis of vertebrates suggests common processes of soft cornification across species.
    Alibardi L, Toni M.
    J Exp Zool B Mol Dev Evol; 2004 Nov 15; 302(6):526-49. PubMed ID: 15468051
    [Abstract] [Full Text] [Related]

  • 22. General aspects on skin development in vertebrates with emphasis on sauropsids epidermis.
    Alibardi L.
    Dev Biol; 2023 Sep 15; 501():60-73. PubMed ID: 37244375
    [Abstract] [Full Text] [Related]

  • 23. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws.
    Alibardi L.
    Protoplasma; 2016 Nov 15; 253(6):1405-1420. PubMed ID: 26597267
    [Abstract] [Full Text] [Related]

  • 24. Immunocytochemical and autoradiographic studies on the process of keratinization in avian epidermis suggests absence of keratohyalin.
    Alibardi L.
    J Morphol; 2004 Feb 15; 259(2):238-53. PubMed ID: 14755753
    [Abstract] [Full Text] [Related]

  • 25. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L.
    J Exp Zool B Mol Dev Evol; 2018 Dec 15; 330(8):438-453. PubMed ID: 30637919
    [Abstract] [Full Text] [Related]

  • 26. Synthesis of interkeratin matrix in differentiating lizard epidermis: an ultrastructural autoradiographic study after injection of tritiated proline and histidine.
    Alibardi L.
    J Morphol; 2004 Feb 15; 259(2):182-97. PubMed ID: 14755750
    [Abstract] [Full Text] [Related]

  • 27. Differentiation of the epidermis in turtle: an immunocytochemical, autoradiographic and electrophoretic analysis.
    Alibardi L, Spisni E, Toni M.
    Acta Histochem; 2004 Feb 15; 106(5):379-95. PubMed ID: 15530553
    [Abstract] [Full Text] [Related]

  • 28. Immunolocalization of large corneous beta-proteins in the green anole lizard (Anolis carolinensis) suggests that they form filaments that associate to the smaller beta-proteins in the beta-layer of the epidermis.
    Alibardi L.
    J Morphol; 2015 Oct 15; 276(10):1244-57. PubMed ID: 26220876
    [Abstract] [Full Text] [Related]

  • 29. Immunocytochemical analysis of beta keratins in the epidermis of chelonians, lepidosaurians, and archosaurians.
    Alibardi L, Sawyer RH.
    J Exp Zool; 2002 Jun 15; 293(1):27-38. PubMed ID: 12115916
    [Abstract] [Full Text] [Related]

  • 30. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives.
    Alibardi L.
    Int Rev Cytol; 2006 Jun 15; 253():177-259. PubMed ID: 17098057
    [Abstract] [Full Text] [Related]

  • 31. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation.
    Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L.
    J Exp Zool B Mol Dev Evol; 2013 Nov 15; 320(7):428-41. PubMed ID: 23794440
    [Abstract] [Full Text] [Related]

  • 32. Distribution and characterization of keratins in the epidermis of the tuatara (Sphenodon punctatus; Lepidosauria, Reptilia).
    Alibardi L, Toni M.
    Zoolog Sci; 2006 Sep 15; 23(9):801-7. PubMed ID: 17043402
    [Abstract] [Full Text] [Related]

  • 33. Characterization of beta-keratins and associated proteins in adult and regenerating epidermis of lizards.
    Alibardi L, Spisni E, Frassanito AG, Toni M.
    Tissue Cell; 2004 Oct 15; 36(5):333-49. PubMed ID: 15385150
    [Abstract] [Full Text] [Related]

  • 34. Disulfide-bond-mediated cross-linking of corneous beta-proteins in lepidosaurian epidermis.
    Holthaus KB, Alibardi L.
    Zoology (Jena); 2018 Feb 15; 126():145-153. PubMed ID: 29129393
    [Abstract] [Full Text] [Related]

  • 35. Differentiation of snake epidermis, with emphasis on the shedding layer.
    Alibardi L.
    J Morphol; 2005 May 15; 264(2):178-90. PubMed ID: 15761820
    [Abstract] [Full Text] [Related]

  • 36. Formation of the corneous layer in the epidermis of the tuatara (Sphenodon punctatus, Sphenodontida, Lepidosauria, Reptilia).
    Alibardi L.
    Zoology (Jena); 2004 May 15; 107(4):275-87. PubMed ID: 16351945
    [Abstract] [Full Text] [Related]

  • 37. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.
    Toni M, Dalla Valle L, Alibardi L.
    J Proteome Res; 2007 May 15; 6(5):1792-805. PubMed ID: 17439263
    [Abstract] [Full Text] [Related]

  • 38. Immunogold labeling shows that glycine-cysteine-rich beta-proteins are deposited in the Oberhäutchen layer of snake epidermis in preparation to shedding.
    Alibardi L.
    J Morphol; 2015 Feb 15; 276(2):144-51. PubMed ID: 25269882
    [Abstract] [Full Text] [Related]

  • 39. Immunolocalization of sulfhydryl oxidase in reptilian epidermis indicates that the enzyme participates mainly to the hardening process of the beta-corneous layer.
    Alibardi L.
    Protoplasma; 2015 Nov 15; 252(6):1529-36. PubMed ID: 25740419
    [Abstract] [Full Text] [Related]

  • 40. Ultrastructural localization of alpha-keratins in the regenerating epidermis of the lizard Podarcis muralis during formation of the shedding layer.
    Alibardi L.
    Tissue Cell; 2000 Apr 15; 32(2):153-62. PubMed ID: 10855701
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.