These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 23070624
21. Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. Yu H, Zhang X, Song L, Ke J, Xu C, Du W, Zhang J. J Biosci Bioeng; 2010 Dec; 110(6):660-4. PubMed ID: 20817594 [Abstract] [Full Text] [Related]
22. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Ko JK, Ximenes E, Kim Y, Ladisch MR. Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138 [Abstract] [Full Text] [Related]
23. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. Tu M, Pan X, Saddler JN. J Agric Food Chem; 2009 Sep 09; 57(17):7771-8. PubMed ID: 19722706 [Abstract] [Full Text] [Related]
24. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Lou H, Zhu JY, Lan TQ, Lai H, Qiu X. ChemSusChem; 2013 May 09; 6(5):919-27. PubMed ID: 23554287 [Abstract] [Full Text] [Related]
25. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Bura R, Chandra R, Saddler J. Biotechnol Prog; 2009 May 09; 25(2):315-22. PubMed ID: 19266561 [Abstract] [Full Text] [Related]
26. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Heiss-Blanquet S, Zheng D, Lopes Ferreira N, Lapierre C, Baumberger S. Bioresour Technol; 2011 May 09; 102(10):5938-46. PubMed ID: 21450460 [Abstract] [Full Text] [Related]
27. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K. Enzyme Microb Technol; 2013 Oct 10; 53(5):315-21. PubMed ID: 24034430 [Abstract] [Full Text] [Related]
28. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K. Enzyme Microb Technol; 2013 May 10; 52(6-7):358-69. PubMed ID: 23608505 [Abstract] [Full Text] [Related]
29. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. Akimkulova A, Zhou Y, Zhao X, Liu D. Bioresour Technol; 2016 May 10; 208():110-116. PubMed ID: 26930032 [Abstract] [Full Text] [Related]
30. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Pereira A, Hoeger IC, Ferrer A, Rencoret J, Del Rio JC, Kruus K, Rahikainen J, Kellock M, Gutiérrez A, Rojas OJ. Biomacromolecules; 2017 Apr 10; 18(4):1322-1332. PubMed ID: 28287708 [Abstract] [Full Text] [Related]
31. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw. Kontogianni N, Barampouti EM, Mai S, Malamis D, Loizidou M. Environ Sci Pollut Res Int; 2019 Dec 10; 26(35):35648-35656. PubMed ID: 31792789 [Abstract] [Full Text] [Related]
32. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw. Wang P, Chang J, Yin Q, Wang E, Zhu Q, Song A, Lu F. Bioresour Technol; 2015 Oct 10; 194():165-71. PubMed ID: 26188559 [Abstract] [Full Text] [Related]
34. Inhibition of enzymatic hydrolysis by residual lignins from softwood--study of enzyme binding and inactivation on lignin-rich surface. Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K. Biotechnol Bioeng; 2011 Dec 10; 108(12):2823-34. PubMed ID: 21702025 [Abstract] [Full Text] [Related]
35. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses. Lin X, Qiu X, Zhu D, Li Z, Zhan N, Zheng J, Lou H, Zhou M, Yang D. Bioresour Technol; 2015 Oct 10; 193():266-73. PubMed ID: 26141287 [Abstract] [Full Text] [Related]
36. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Nakagame S, Chandra RP, Kadla JF, Saddler JN. Biotechnol Bioeng; 2011 Mar 10; 108(3):538-48. PubMed ID: 21246506 [Abstract] [Full Text] [Related]
37. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Biotechnol Bioeng; 2008 Dec 01; 101(5):913-25. PubMed ID: 18781690 [Abstract] [Full Text] [Related]
38. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Kaparaju P, Felby C. Bioresour Technol; 2010 May 01; 101(9):3175-81. PubMed ID: 20056415 [Abstract] [Full Text] [Related]
39. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. Liu H, Zhu JY, Fu SY. J Agric Food Chem; 2010 Jun 23; 58(12):7233-8. PubMed ID: 20509690 [Abstract] [Full Text] [Related]
40. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY. Biotechnol Bioeng; 2012 Feb 23; 109(2):381-9. PubMed ID: 21915856 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]