These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 23085745
1. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. Analyst; 2012 Dec 21; 137(24):5749-56. PubMed ID: 23085745 [Abstract] [Full Text] [Related]
2. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ. Appl Environ Microbiol; 2007 Mar 21; 73(6):1992-2000. PubMed ID: 17277212 [Abstract] [Full Text] [Related]
3. The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. Korndörfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ. J Mol Biol; 2006 Dec 08; 364(4):678-89. PubMed ID: 17010991 [Abstract] [Full Text] [Related]
4. Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction-based quantification. Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I. Foodborne Pathog Dis; 2010 Sep 08; 7(9):1019-24. PubMed ID: 20500083 [Abstract] [Full Text] [Related]
5. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Kong M, Sim J, Kang T, Nguyen HH, Park HK, Chung BH, Ryu S. Eur Biophys J; 2015 Sep 08; 44(6):437-46. PubMed ID: 26043681 [Abstract] [Full Text] [Related]
7. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R. Anal Chem; 2008 Dec 15; 80(24):9475-82. PubMed ID: 19072262 [Abstract] [Full Text] [Related]
8. Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ. Appl Environ Microbiol; 2010 Sep 15; 76(17):5745-56. PubMed ID: 20622130 [Abstract] [Full Text] [Related]
9. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Kong M, Shin JH, Heu S, Park JK, Ryu S. Biosens Bioelectron; 2017 Oct 15; 96():173-177. PubMed ID: 28494369 [Abstract] [Full Text] [Related]
10. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. Lin Z, Chen L, Zhang G, Liu Q, Qiu B, Cai Z, Chen G. Analyst; 2012 Feb 21; 137(4):819-22. PubMed ID: 22158706 [Abstract] [Full Text] [Related]
11. An amperometric biosensor based on laccase immobilized onto MnO2NPs/cMWCNT/PANI modified Au electrode. Rawal R, Chawla S, Malik P, Pundir CS. Int J Biol Macromol; 2012 Feb 21; 51(1-2):175-81. PubMed ID: 22142791 [Abstract] [Full Text] [Related]
12. EIS biosensor based on a novel Myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes. Wang J, Li H, Li C, Ding Y, Wang Y, Zhu W, Wang J, Shao Y, Pan H, Wang X. Food Res Int; 2022 Aug 21; 158():111479. PubMed ID: 35840199 [Abstract] [Full Text] [Related]
13. Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Zhang H, Bao H, Billington C, Hudson JA, Wang R. Food Microbiol; 2012 Aug 21; 31(1):133-6. PubMed ID: 22475951 [Abstract] [Full Text] [Related]
14. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Chauhan N, Pundir CS. Anal Chim Acta; 2011 Sep 02; 701(1):66-74. PubMed ID: 21763810 [Abstract] [Full Text] [Related]
16. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Rawal R, Chawla S, Pundir CS. Biosens Bioelectron; 2012 Jan 15; 31(1):144-50. PubMed ID: 22035973 [Abstract] [Full Text] [Related]
17. A mediator-free amperometric hydrogen peroxide biosensor based on HRP immobilized on a nano-Au/poly 2,6-pyridinediamine-coated electrode. Cao S, Yuan R, Chai Y, Zhang L, Li X, Gao F. Bioprocess Biosyst Eng; 2007 Mar 15; 30(2):71-8. PubMed ID: 17242931 [Abstract] [Full Text] [Related]
18. Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation. Mejri MB, Baccar H, Baldrich E, Del Campo FJ, Helali S, Ktari T, Simonian A, Aouni M, Abdelghani A. Biosens Bioelectron; 2010 Dec 15; 26(4):1261-7. PubMed ID: 20673624 [Abstract] [Full Text] [Related]
19. Bacteria screening, viability, and confirmation assays using bacteriophage-impedimetric/loop-mediated isothermal amplification dual-response biosensors. Tlili C, Sokullu E, Safavieh M, Tolba M, Ahmed MU, Zourob M. Anal Chem; 2013 May 21; 85(10):4893-901. PubMed ID: 23510137 [Abstract] [Full Text] [Related]
20. Structural Basis for Cell-Wall Recognition by Bacteriophage PBC5 Endolysin. Lee KO, Kong M, Kim I, Bai J, Cha S, Kim B, Ryu KS, Ryu S, Suh JY. Structure; 2019 Sep 03; 27(9):1355-1365.e4. PubMed ID: 31353242 [Abstract] [Full Text] [Related] Page: [Next] [New Search]