These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
384 related items for PubMed ID: 23092386
41. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD. Bhatnagar K, Pathak A, Menke D, Cornish PV, Gangopadhyay K, Korampally V, Gangopadhyay S. Nanotechnology; 2012 Dec 14; 23(49):495201. PubMed ID: 23154752 [Abstract] [Full Text] [Related]
42. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors. Ooi KJ, Bai P, Gu MX, Ang LK. Nanotechnology; 2012 Jul 11; 23(27):275201. PubMed ID: 22706495 [Abstract] [Full Text] [Related]
44. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum. Ahmadivand A, Pala N. J Opt Soc Am A Opt Image Sci Vis; 2015 Feb 01; 32(2):204-12. PubMed ID: 26366591 [Abstract] [Full Text] [Related]
45. Plasmonic external cavity laser refractometric sensor. Zhang M, Lu M, Ge C, Cunningham BT. Opt Express; 2014 Aug 25; 22(17):20347-57. PubMed ID: 25321243 [Abstract] [Full Text] [Related]
46. A periodically coupled plasmon nanostructure for refractive index sensing. Briscoe JL, Cho SY. Opt Express; 2011 Apr 25; 19(9):8815-20. PubMed ID: 21643134 [Abstract] [Full Text] [Related]
47. Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution. Lin SF, Wang CM, Ding TJ, Tsai YL, Yang TH, Chen WY, Chang JY. Opt Express; 2012 Jun 18; 20(13):14584-95. PubMed ID: 22714520 [Abstract] [Full Text] [Related]
48. Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G. Small; 2009 Dec 18; 5(24):2876-82. PubMed ID: 19816878 [Abstract] [Full Text] [Related]
52. Nanocavities at the surface of three-dimensional photonic crystals. Ishizaki K, Gondaira K, Ota Y, Suzuki K, Noda S. Opt Express; 2013 May 06; 21(9):10590-6. PubMed ID: 23669914 [Abstract] [Full Text] [Related]
53. Photonic crystal nanostructures for optical biosensing applications. Dorfner D, Zabel T, Hürlimann T, Hauke N, Frandsen L, Rant U, Abstreiter G, Finley J. Biosens Bioelectron; 2009 Aug 15; 24(12):3688-92. PubMed ID: 19501502 [Abstract] [Full Text] [Related]
54. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit. Bahramipanah M, Dutta-Gupta S, Abasahl B, Martin OJ. ACS Nano; 2015 Jul 28; 9(7):7621-33. PubMed ID: 26131684 [Abstract] [Full Text] [Related]
55. Differentiating surface and bulk interactions in nanoplasmonic interferometric sensor arrays. Zeng B, Gao Y, Bartoli FJ. Nanoscale; 2015 Jan 07; 7(1):166-70. PubMed ID: 25407985 [Abstract] [Full Text] [Related]
56. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Piliarik M, Vala M, Tichý I, Homola J. Biosens Bioelectron; 2009 Aug 15; 24(12):3430-5. PubMed ID: 19109004 [Abstract] [Full Text] [Related]