These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 23092624
1. The time-dependent accumulation of protoporphyrin IX fluorescence in nodular basal cell carcinoma following application of methyl aminolevulinate with an oxygen pressure injection device. Blake E, Campbell S, Allen J, Mathew J, Helliwell P, Curnow A. J Photochem Photobiol B; 2012 Dec 05; 117():97-103. PubMed ID: 23092624 [Abstract] [Full Text] [Related]
2. A clinical investigation to determine the effect of pressure injection on the penetration of topical methyl aminolevulinate into nodular basal cell carcinoma of the skin. Campbell SM, Pye A, Horton S, Matthew J, Helliwell P, Curnow A. J Environ Pathol Toxicol Oncol; 2007 Dec 05; 26(4):295-303. PubMed ID: 18197827 [Abstract] [Full Text] [Related]
3. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy. Blake E, Allen J, Thorn C, Shore A, Curnow A. Lasers Med Sci; 2013 May 05; 28(3):997-1005. PubMed ID: 22926533 [Abstract] [Full Text] [Related]
4. Comparison of ALA- and ALA hexyl-ester-induced PpIX depth distribution in human skin carcinoma. Dögnitz N, Salomon D, Zellweger M, Ballini JP, Gabrecht T, Lange N, van den Bergh H, Wagnières G. J Photochem Photobiol B; 2008 Dec 11; 93(3):140-8. PubMed ID: 18818091 [Abstract] [Full Text] [Related]
5. Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification. Tyrrell J, Campbell SM, Curnow A. Photodiagnosis Photodyn Ther; 2011 Mar 11; 8(1):30-8. PubMed ID: 21333932 [Abstract] [Full Text] [Related]
6. Development of a handheld fluorescence imaging device to investigate the characteristics of protoporphyrin IX fluorescence in healthy and diseased skin. Kulyk O, Ibbotson SH, Moseley H, Valentine RM, Samuel ID. Photodiagnosis Photodyn Ther; 2015 Dec 11; 12(4):630-9. PubMed ID: 26467274 [Abstract] [Full Text] [Related]
7. Lack of effect of selected sunscreens applied on ex vivo human skin for 5-methyl-aminolevulinic acid penetration and protoporphyrin IX photoactivation. Osman-Ponchet H, Sevin K, Gaborit A, Kouidhi M, Hanaizi J, Comby P, Ruty B, Bouvier G. Photodiagnosis Photodyn Ther; 2017 Mar 11; 17():75-81. PubMed ID: 27903435 [Abstract] [Full Text] [Related]
8. Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-aminolevulinic acid or methyl 5-aminolevulinate. de Bruijn HS, Meijers C, van der Ploeg-van den Heuvel A, Sterenborg HJ, Robinson DJ. J Photochem Photobiol B; 2008 Aug 21; 92(2):91-7. PubMed ID: 18571933 [Abstract] [Full Text] [Related]
9. A time course investigation of the fluorescence induced by topical application of 5-aminolevulinic acid and methyl aminolevulinate on normal human skin. Lesar A, Ferguson J, Moseley H. Photodermatol Photoimmunol Photomed; 2009 Aug 21; 25(4):191-5. PubMed ID: 19614897 [Abstract] [Full Text] [Related]
10. The relationship between protoporphyrin IX photobleaching during real-time dermatological methyl-aminolevulinate photodynamic therapy (MAL-PDT) and subsequent clinical outcome. Tyrrell JS, Campbell SM, Curnow A. Lasers Surg Med; 2010 Sep 21; 42(7):613-9. PubMed ID: 20806386 [Abstract] [Full Text] [Related]
11. Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment. Martin A, Tope WD, Grevelink JM, Starr JC, Fewkes JL, Flotte TJ, Deutsch TF, Anderson RR. Arch Dermatol Res; 1995 Sep 21; 287(7):665-74. PubMed ID: 8534131 [Abstract] [Full Text] [Related]
12. Fractional laser-assisted delivery of methyl aminolevulinate: Impact of laser channel depth and incubation time. Haak CS, Farinelli WA, Tam J, Doukas AG, Anderson RR, Haedersdal M. Lasers Surg Med; 2012 Dec 21; 44(10):787-95. PubMed ID: 23212624 [Abstract] [Full Text] [Related]
13. In vitro percutaneous absorption and in vivo protoporphyrin IX accumulation in skin and tumors after topical 5-aminolevulinic acid application with enhancement using an erbium:YAG laser. Shen SC, Lee WR, Fang YP, Hu CH, Fang JY. J Pharm Sci; 2006 Apr 21; 95(4):929-38. PubMed ID: 16493590 [Abstract] [Full Text] [Related]
14. Porphyrin formation in actinic keratosis and basal cell carcinoma after topical application of methyl 5-aminolevulinate. Angell-Petersen E, Sørensen R, Warloe T, Soler AM, Moan J, Peng Q, Giercksky KE. J Invest Dermatol; 2006 Feb 21; 126(2):265-71. PubMed ID: 16374471 [Abstract] [Full Text] [Related]
15. Enhancement of methyl-aminolevulinate photodynamic therapy by iron chelation with CP94: an in vitro investigation and clinical dose-escalating safety study for the treatment of nodular basal cell carcinoma. Pye A, Campbell S, Curnow A. J Cancer Res Clin Oncol; 2008 Aug 21; 134(8):841-9. PubMed ID: 18239941 [Abstract] [Full Text] [Related]
16. Porphyrin biodistribution in UV-exposed murine skin after methyl- and hexyl-aminolevulinate incubation. Togsverd-Bo K, Lerche CM, Philipsen PA, Poulsen T, Wulf HC, Haedersdal M. Exp Dermatol; 2012 Apr 21; 21(4):260-4. PubMed ID: 22320713 [Abstract] [Full Text] [Related]
17. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy. Anayo L, Magnussen A, Perry A, Wood M, Curnow A. Lasers Surg Med; 2018 Jul 21; 50(5):552-565. PubMed ID: 29603761 [Abstract] [Full Text] [Related]
18. A quantitative assessment of protoporphyrin IX metabolism and phototoxicity in human skin following dose-controlled delivery of the prodrugs 5-aminolaevulinic acid and 5-aminolaevulinic acid-n-pentylester. Gerscher S, Connelly JP, Beijersbergen Van Henegouwen GM, MacRobert AJ, Watt P, Rhodes LE. Br J Dermatol; 2001 May 21; 144(5):983-90. PubMed ID: 11359385 [Abstract] [Full Text] [Related]
19. Ablative fractional laser enhances MAL-induced PpIX accumulation: Impact of laser channel density, incubation time and drug concentration. Haak CS, Christiansen K, Erlendsson AM, Taudorf EH, Thaysen-Petersen D, Wulf HC, Haedersdal M. J Photochem Photobiol B; 2016 Jun 21; 159():42-8. PubMed ID: 27016718 [Abstract] [Full Text] [Related]
20. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Liu B, Farrell TJ, Patterson MS. Phys Med Biol; 2010 Oct 07; 55(19):5913-32. PubMed ID: 20844331 [Abstract] [Full Text] [Related] Page: [Next] [New Search]