These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 23093903
1. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. Int J Nanomedicine; 2012; 7():5475-89. PubMed ID: 23093903 [Abstract] [Full Text] [Related]
6. Dry powder inhaler formulations of poorly water-soluble itraconazole: A balance between in-vitro dissolution and in-vivo distribution is necessary. Huang Z, Lin L, McGoverin C, Liu H, Wang L, Zhou QT, Lu M, Wu C. Int J Pharm; 2018 Nov 15; 551(1-2):103-110. PubMed ID: 30217767 [Abstract] [Full Text] [Related]
8. NanoCluster Itraconazole Formulations Provide a Potential Engineered Drug Particle Approach to Generate Effective Dry Powder Aerosols. Pornputtapitak W, El-Gendy N, Berkland C. J Aerosol Med Pulm Drug Deliv; 2015 Oct 15; 28(5):341-52. PubMed ID: 25679514 [Abstract] [Full Text] [Related]
9. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Sun W, Ni R, Zhang X, Li LC, Mao S. Drug Dev Ind Pharm; 2015 Jun 15; 41(6):927-33. PubMed ID: 24785575 [Abstract] [Full Text] [Related]
10. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. Sun W, Mao S, Shi Y, Li LC, Fang L. J Pharm Sci; 2011 Aug 15; 100(8):3365-3373. PubMed ID: 21520089 [Abstract] [Full Text] [Related]
11. Dandelion inspired microparticles with highly efficient drug delivery to deep lung. Sun H, Yan S, Wu C, Ma J, Lu K, Cheng X, Yan W, Zhang S, Chen XD, Wu WD. Colloids Surf B Biointerfaces; 2024 Dec 15; 244():114134. PubMed ID: 39121569 [Abstract] [Full Text] [Related]
15. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Wan KY, Weng J, Wong SN, Kwok PCL, Chow SF, Chow AHL. Eur J Pharm Biopharm; 2020 Apr 15; 149():238-247. PubMed ID: 32112895 [Abstract] [Full Text] [Related]
16. Conversion of nanosuspensions into dry powders by spray drying: a case study. Chaubal MV, Popescu C. Pharm Res; 2008 Oct 15; 25(10):2302-8. PubMed ID: 18509597 [Abstract] [Full Text] [Related]
17. Development of stabilized itraconazole nanodispersions by using high-gravity technique. Zhang ZL, Le Y, Wang JX, Zhao H, Chen JF. Drug Dev Ind Pharm; 2012 Dec 15; 38(12):1512-20. PubMed ID: 22435399 [Abstract] [Full Text] [Related]
18. Nanonized itraconazole powders for extemporary oral suspensions: Role of formulation components studied by a mixture design. Foglio Bonda A, Rinaldi M, Segale L, Palugan L, Cerea M, Vecchio C, Pattarino F. Eur J Pharm Sci; 2016 Feb 15; 83():175-83. PubMed ID: 26742430 [Abstract] [Full Text] [Related]
19. Cryogenic liquids, nanoparticles, and microencapsulation. Purvis T, Vaughn JM, Rogers TL, Chen X, Overhoff KA, Sinswat P, Hu J, McConville JT, Johnston KP, Williams RO. Int J Pharm; 2006 Oct 31; 324(1):43-50. PubMed ID: 16814968 [Abstract] [Full Text] [Related]
20. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA). Zong L, Li X, Wang H, Cao Y, Yin L, Li M, Wei Z, Chen D, Pu X, Han J. Int J Pharm; 2017 Oct 05; 531(1):108-117. PubMed ID: 28830781 [Abstract] [Full Text] [Related] Page: [Next] [New Search]