These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 23095859
1. MUMAL: multivariate analysis in shotgun proteomics using machine learning techniques. Cerqueira FR, Ferreira RS, Oliveira AP, Gomes AP, Ramos HJ, Graber A, Baumgartner C. BMC Genomics; 2012; 13 Suppl 5(Suppl 5):S4. PubMed ID: 23095859 [Abstract] [Full Text] [Related]
2. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm. Cerqueira FR, Ricardo AM, de Paiva Oliveira A, Graber A, Baumgartner C. BMC Bioinformatics; 2016 Dec 15; 17(Suppl 18):472. PubMed ID: 28105913 [Abstract] [Full Text] [Related]
3. MUDE: a new approach for optimizing sensitivity in the target-decoy search strategy for large-scale peptide/protein identification. Cerqueira FR, Graber A, Schwikowski B, Baumgartner C. J Proteome Res; 2010 May 07; 9(5):2265-77. PubMed ID: 20199108 [Abstract] [Full Text] [Related]
4. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Wang G, Wu WW, Zhang Z, Masilamani S, Shen RF. Anal Chem; 2009 Jan 01; 81(1):146-59. PubMed ID: 19061407 [Abstract] [Full Text] [Related]
5. Improvements to the percolator algorithm for Peptide identification from shotgun proteomics data sets. Spivak M, Weston J, Bottou L, Käll L, Noble WS. J Proteome Res; 2009 Jul 01; 8(7):3737-45. PubMed ID: 19385687 [Abstract] [Full Text] [Related]
8. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. Tu C, Shen S, Sheng Q, Shyr Y, Qu J. J Proteomics; 2017 Jan 30; 152():276-282. PubMed ID: 27903464 [Abstract] [Full Text] [Related]
11. Common Decoy Distributions Simplify False Discovery Rate Estimation in Shotgun Proteomics. Madej D, Wu L, Lam H. J Proteome Res; 2022 Feb 04; 21(2):339-348. PubMed ID: 34989576 [Abstract] [Full Text] [Related]
12. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics. Pfeifer N, Leinenbach A, Huber CG, Kohlbacher O. BMC Bioinformatics; 2007 Nov 30; 8():468. PubMed ID: 18053132 [Abstract] [Full Text] [Related]
13. APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools. Malm EK, Srivastava V, Sundqvist G, Bulone V. BMC Bioinformatics; 2014 Dec 30; 15(1):441. PubMed ID: 25547515 [Abstract] [Full Text] [Related]
14. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J. Mol Cell Proteomics; 2014 Dec 30; 13(12):3663-73. PubMed ID: 25202125 [Abstract] [Full Text] [Related]
15. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Nat Methods; 2007 Nov 30; 4(11):923-5. PubMed ID: 17952086 [Abstract] [Full Text] [Related]
16. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics. Keich U, Kertesz-Farkas A, Noble WS. J Proteome Res; 2015 Aug 07; 14(8):3148-61. PubMed ID: 26152888 [Abstract] [Full Text] [Related]