These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 23097233
1. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Yang W, Ren Q, Wu YN, Morris VK, Rey AA, Braet F, Kwan AH, Sunde M. Biopolymers; 2013 Jan; 99(1):84-94. PubMed ID: 23097233 [Abstract] [Full Text] [Related]
2. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W. Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738 [Abstract] [Full Text] [Related]
3. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK, Sunde M. Methods Mol Biol; 2013 Nov; 996():119-29. PubMed ID: 23504421 [Abstract] [Full Text] [Related]
4. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M. Methods Mol Biol; 2020 Nov; 2073():55-72. PubMed ID: 31612436 [Abstract] [Full Text] [Related]
5. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S. Biochim Biophys Acta; 2014 Jun; 1844(6):1137-44. PubMed ID: 24631542 [Abstract] [Full Text] [Related]
6. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Niu B, Li B, Wang H, Guo R, Xu H, Qiao M, Li W. Colloids Surf B Biointerfaces; 2017 Feb 01; 150():344-351. PubMed ID: 27842929 [Abstract] [Full Text] [Related]
7. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q, Kwan AH, Sunde M. Proteins; 2014 Jun 01; 82(6):990-1003. PubMed ID: 24218020 [Abstract] [Full Text] [Related]
8. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A, Weich S, Szilvay GR, Leitner M, Tappura K, Ebner A. J Biol Chem; 2021 Jun 01; 296():100728. PubMed ID: 33933454 [Abstract] [Full Text] [Related]
9. Self-assembly of hydrophobin protein rodlets studied with atomic force spectroscopy in dynamic mode. Houmadi S, Rodriguez RD, Longobardi S, Giardina P, Fauré MC, Giocondo M, Lacaze E. Langmuir; 2012 Feb 07; 28(5):2551-7. PubMed ID: 22181848 [Abstract] [Full Text] [Related]
10. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M. J Mol Biol; 2008 Oct 10; 382(3):708-20. PubMed ID: 18674544 [Abstract] [Full Text] [Related]
11. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Lo VC, Ren Q, Pham CL, Morris VK, Kwan AH, Sunde M. Nanomaterials (Basel); 2014 Sep 17; 4(3):827-843. PubMed ID: 28344251 [Abstract] [Full Text] [Related]
12. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Lienemann M, Grunér MS, Paananen A, Siika-Aho M, Linder MB. Biomacromolecules; 2015 Apr 13; 16(4):1283-92. PubMed ID: 25724119 [Abstract] [Full Text] [Related]
13. Structural basis for rodlet assembly in fungal hydrophobins. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP. Proc Natl Acad Sci U S A; 2006 Mar 07; 103(10):3621-6. PubMed ID: 16537446 [Abstract] [Full Text] [Related]
14. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins. Ren Q, Kwan AH, Sunde M. Biopolymers; 2013 Nov 07; 100(6):601-12. PubMed ID: 23913717 [Abstract] [Full Text] [Related]
15. Hydrophobins, the fungal coat unravelled. Wösten HA, de Vocht ML. Biochim Biophys Acta; 2000 Sep 18; 1469(2):79-86. PubMed ID: 10998570 [Abstract] [Full Text] [Related]
17. Layer thickness of hydrophobin films leads to oscillation in wettability. Gruner LJ, Ostermann K, Rödel G. Langmuir; 2012 May 01; 28(17):6942-9. PubMed ID: 22458322 [Abstract] [Full Text] [Related]
18. Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Yu L, Zhang B, Szilvay GR, Sun R, Jänis J, Wang Z, Feng S, Xu H, Linder MB, Qiao M. Microbiology (Reading); 2008 Jun 01; 154(Pt 6):1677-1685. PubMed ID: 18524922 [Abstract] [Full Text] [Related]
19. Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils. Gravagnuolo AM, Longobardi S, Luchini A, Appavou MS, De Stefano L, Notomista E, Paduano L, Giardina P. Biomacromolecules; 2016 Mar 14; 17(3):954-64. PubMed ID: 26828412 [Abstract] [Full Text] [Related]
20. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ, Lee M, Na S. Colloids Surf B Biointerfaces; 2019 Jan 01; 173():128-138. PubMed ID: 30278361 [Abstract] [Full Text] [Related] Page: [Next] [New Search]