These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1267 related items for PubMed ID: 23102268

  • 1. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA, Stephens S, Liu Q, Skabo S, Warnke PH.
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Core-shell PLGA/collagen nanofibers loaded with recombinant FN/CDHs as bone tissue engineering scaffolds.
    Wang J, Cui X, Zhou Y, Xiang Q.
    Connect Tissue Res; 2014 Aug; 55(4):292-8. PubMed ID: 24844413
    [Abstract] [Full Text] [Related]

  • 4. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R, Toti US, Laurencin CT, Kumbar SG.
    Methods Mol Biol; 2011 Aug; 726():243-58. PubMed ID: 21424454
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV.
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z.
    ACS Appl Mater Interfaces; 2015 Mar 25; 7(11):6331-9. PubMed ID: 25741576
    [Abstract] [Full Text] [Related]

  • 9. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC.
    Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():402-9. PubMed ID: 24268275
    [Abstract] [Full Text] [Related]

  • 10. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS, Ki CS, Kim JW, Lee KG, Kang SW, Kweon HY, Park YH.
    Biopolymers; 2012 May 01; 97(5):265-75. PubMed ID: 22169927
    [Abstract] [Full Text] [Related]

  • 11. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering.
    Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV.
    J Biomater Sci Polym Ed; 2014 May 01; 25(4):325-40. PubMed ID: 24274102
    [Abstract] [Full Text] [Related]

  • 12. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes.
    Thakkar S, Ghebes CA, Ahmed M, Kelder C, van Blitterswijk CA, Saris D, Fernandes HA, Moroni L.
    Biofabrication; 2013 Jun 01; 5(2):025003. PubMed ID: 23443652
    [Abstract] [Full Text] [Related]

  • 13. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS, Matta R, Letendre J, Collins P, Mazzocca AD, Kumbar SG.
    Methods Mol Biol; 2017 Jun 01; 1570():261-278. PubMed ID: 28238143
    [Abstract] [Full Text] [Related]

  • 14. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y, Zhao Z, Zhao B, Qi HX, Peng J, Zhang L, Xu WJ, Hu P, Lu SB.
    Chin Med J (Engl); 2011 Aug 01; 124(15):2361-6. PubMed ID: 21933569
    [Abstract] [Full Text] [Related]

  • 15. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering.
    Jin G, Prabhakaran MP, Ramakrishna S.
    Acta Biomater; 2011 Aug 01; 7(8):3113-22. PubMed ID: 21550425
    [Abstract] [Full Text] [Related]

  • 16. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A, Krishnan UM, Sethuraman S.
    Biomed Mater; 2011 Apr 01; 6(2):025004. PubMed ID: 21301055
    [Abstract] [Full Text] [Related]

  • 17. Electrospinning of Biosyn(®)-based tubular conduits: structural, morphological, and mechanical characterizations.
    Thomas V, Donahoe T, Nyairo E, Dean DR, Vohra YK.
    Acta Biomater; 2011 May 01; 7(5):2070-9. PubMed ID: 21232639
    [Abstract] [Full Text] [Related]

  • 18. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering.
    Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M.
    Acta Biomater; 2012 Feb 01; 8(2):763-71. PubMed ID: 22100346
    [Abstract] [Full Text] [Related]

  • 19. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May 01; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS.
    BMC Cell Biol; 2015 Sep 03; 16():22. PubMed ID: 26335746
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 64.