These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine. Pereshivko OP, Peshkov VA, Van der Eycken EV. Org Lett; 2010 Jun 04; 12(11):2638-41. PubMed ID: 20441203 [Abstract] [Full Text] [Related]
3. CuBr for KA(2) reaction: en route to propargylic amines bearing a quaternary carbon center. Tang X, Kuang J, Ma S. Chem Commun (Camb); 2013 Oct 11; 49(79):8976-8. PubMed ID: 23962962 [Abstract] [Full Text] [Related]
4. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes. Nakamura S, Ohara M, Nakamura Y, Shibata N, Toru T. Chemistry; 2010 Feb 22; 16(8):2360-2. PubMed ID: 20108286 [No Abstract] [Full Text] [Related]
6. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism. Volla CM, Vogel P. Org Lett; 2009 Apr 16; 11(8):1701-4. PubMed ID: 19296636 [Abstract] [Full Text] [Related]
7. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids. Park SB, Alper H. Chem Commun (Camb); 2005 Mar 14; (10):1315-7. PubMed ID: 15742063 [Abstract] [Full Text] [Related]
8. Direct enantioselective three-component synthesis of optically active propargylamines in water. Ohara M, Hara Y, Ohnuki T, Nakamura S. Chemistry; 2014 Jul 14; 20(29):8848-51. PubMed ID: 24919989 [Abstract] [Full Text] [Related]
9. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines. Koradin C, Gommermann N, Polborn K, Knochel P. Chemistry; 2003 Jun 16; 9(12):2797-2811. PubMed ID: 12866545 [Abstract] [Full Text] [Related]
10. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Chen X, Chen T, Zhou Y, Au CT, Han LB, Yin SF. Org Biomol Chem; 2014 Jan 14; 12(2):247-50. PubMed ID: 24264798 [Abstract] [Full Text] [Related]
13. One-pot multi-component route to propargylamines using zinc oxide under solvent-free conditions. Hosseini-Sarvari M, Moeini F. Comb Chem High Throughput Screen; 2014 Jan 14; 17(5):439-49. PubMed ID: 24344992 [Abstract] [Full Text] [Related]
15. Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water. Bonfield ER, Li CJ. Org Biomol Chem; 2007 Feb 07; 5(3):435-7. PubMed ID: 17252122 [Abstract] [Full Text] [Related]
16. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. González-Béjar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC. Chem Commun (Camb); 2013 Feb 28; 49(17):1732-4. PubMed ID: 23340772 [Abstract] [Full Text] [Related]