These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


623 related items for PubMed ID: 23109298

  • 21. Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model.
    Scott BR.
    Hum Exp Toxicol; 2008 Feb; 27(2):163-8. PubMed ID: 18480143
    [Abstract] [Full Text] [Related]

  • 22. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions.
    Buonanno M, De Toledo SM, Howell RW, Azzam EI.
    J Radiat Res; 2015 May; 56(3):502-8. PubMed ID: 25805407
    [Abstract] [Full Text] [Related]

  • 23. Small doses of high-linear energy transfer radiation increase the radioresistance of Chinese hamster V79 cells to subsequent X irradiation.
    Marples B, Skov KA.
    Radiat Res; 1996 Oct; 146(4):382-7. PubMed ID: 8927710
    [Abstract] [Full Text] [Related]

  • 24. [Effects of low-dose accelerated charged particles of varying LET on cytogenetic changes in comeal epithelium cells in mice].
    Vorozhtsova SV, Fedorenko BS, Tsetlin VV.
    Aviakosm Ekolog Med; 2004 Oct; 38(4):44-9. PubMed ID: 15500169
    [Abstract] [Full Text] [Related]

  • 25. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta.
    Zhou L, Li W, Yu L, Li P, Li Q, Ma S, Dong X, Zhou G, Leloup C.
    Int J Radiat Biol; 2006 Jul; 82(7):473-81. PubMed ID: 16882619
    [Abstract] [Full Text] [Related]

  • 26. A composite microdose Adaptive Response (AR) and Bystander Effect (BE) model-application to low LET and high LET AR and BE data.
    Leonard BE.
    Int J Radiat Biol; 2008 Aug; 84(8):681-701. PubMed ID: 18661382
    [Abstract] [Full Text] [Related]

  • 27. Radioprotection of mouse colony forming units-spleen against heavy-charged particle damage by WR 2721.
    Afzal SM, Ainsworth EJ.
    Radiat Res; 1987 Jan; 109(1):118-26. PubMed ID: 3027738
    [Abstract] [Full Text] [Related]

  • 28. Radiation-induced epigenetic alterations after low and high LET irradiations.
    Aypar U, Morgan WF, Baulch JE.
    Mutat Res; 2011 Feb 10; 707(1-2):24-33. PubMed ID: 21159317
    [Abstract] [Full Text] [Related]

  • 29. Complex exchanges are responsible for the increased effectiveness of C-ions compared to X-rays at the first post-irradiation mitosis.
    Lee R, Sommer S, Hartel C, Nasonova E, Durante M, Ritter S.
    Mutat Res; 2010 Aug 14; 701(1):52-9. PubMed ID: 20298802
    [Abstract] [Full Text] [Related]

  • 30. Mutagenic effects of carbon ions near the range end in plants.
    Hase Y, Yoshihara R, Nozawa S, Narumi I.
    Mutat Res; 2012 Mar 01; 731(1-2):41-7. PubMed ID: 22027091
    [Abstract] [Full Text] [Related]

  • 31. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.
    Tsuruoka C, Suzuki M, Fujitaka K.
    Biol Sci Space; 2003 Oct 01; 17(3):185-6. PubMed ID: 14676365
    [Abstract] [Full Text] [Related]

  • 32. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays.
    Varès G, Wang B, Tanaka K, Kakimoto A, Eguchi-Kasai K, Nenoi M.
    Mutat Res; 2011 Jan 10; 706(1-2):46-52. PubMed ID: 21055411
    [Abstract] [Full Text] [Related]

  • 33. HZE radiation effects for hereditary renal carcinomas.
    Nakadai T, Nojima K, Kobayashi I, Sato K, Yasuda N, Mitani H, Hino O.
    Biol Sci Space; 2004 Nov 10; 18(3):177-8. PubMed ID: 15858379
    [Abstract] [Full Text] [Related]

  • 34. Inter-chromosomal variation in aberration frequencies in human lymphocytes exposed to charged particles of LET between 0.5 and 55 keV/μm.
    Deperas-Kaminska M, Zaytseva EM, Deperas-Standylo J, Mitsyn GV, Molokanov AG, Timoshenko GN, Wojcik A.
    Int J Radiat Biol; 2010 Nov 10; 86(11):975-85. PubMed ID: 20670111
    [Abstract] [Full Text] [Related]

  • 35. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes.
    Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE.
    Radiat Res; 2018 Apr 10; 189(4):354-370. PubMed ID: 29369006
    [Abstract] [Full Text] [Related]

  • 36. Relative biological effectiveness of 12C and 28Si radiation in C57BL/6J mice.
    Suman S, Datta K, Trani D, Laiakis EC, Strawn SJ, Fornace AJ.
    Radiat Environ Biophys; 2012 Aug 10; 51(3):303-9. PubMed ID: 22562428
    [Abstract] [Full Text] [Related]

  • 37. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.
    Wang X, Farris Iii AB, Wang P, Zhang X, Wang H, Wang Y.
    Radiat Res; 2015 Feb 10; 183(2):233-9. PubMed ID: 25635344
    [Abstract] [Full Text] [Related]

  • 38. Fractionated-dose effect of X-irradiation on the induction of neural tube defects in mice.
    Inouye M, Darmanto W, Tamaru M, Walsh DA.
    Environ Med; 1997 Oct 10; 41(1):40-2. PubMed ID: 12523375
    [Abstract] [Full Text] [Related]

  • 39. The effect of ionizing radiations with different LET on survival and mutation in Chlorella.
    Dubinin NP, Shevchenko VA, Rubanovich AV, Vekshina LK, Sakovich IS.
    Life Sci Space Res; 1975 Oct 10; 13():181-6. PubMed ID: 12180473
    [Abstract] [Full Text] [Related]

  • 40. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.
    Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, Azzam EI, Murakami T, Suzuki M.
    Int J Radiat Biol; 2015 Jan 10; 91(1):62-70. PubMed ID: 25084840
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 32.