These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 23112070

  • 1. Heterogeneous data integration by tree-augmented naïve Bayes for protein-protein interactions prediction.
    Lin X, Chen XW.
    Proteomics; 2013 Jan; 13(2):261-8. PubMed ID: 23112070
    [Abstract] [Full Text] [Related]

  • 2. De novo prediction of RNA-protein interactions from sequence information.
    Wang Y, Chen X, Liu ZP, Huang Q, Wang Y, Xu D, Zhang XS, Chen R, Chen L.
    Mol Biosyst; 2013 Jan 27; 9(1):133-42. PubMed ID: 23138266
    [Abstract] [Full Text] [Related]

  • 3. A mouse protein interactome through combined literature mining with multiple sources of interaction evidence.
    Li X, Cai H, Xu J, Ying S, Zhang Y.
    Amino Acids; 2010 Apr 27; 38(4):1237-52. PubMed ID: 19669079
    [Abstract] [Full Text] [Related]

  • 4. Assessing the limits of genomic data integration for predicting protein networks.
    Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M.
    Genome Res; 2005 Jul 27; 15(7):945-53. PubMed ID: 15998909
    [Abstract] [Full Text] [Related]

  • 5. Protein classification based on text document classification techniques.
    Cheng BY, Carbonell JG, Klein-Seetharaman J.
    Proteins; 2005 Mar 01; 58(4):955-70. PubMed ID: 15645499
    [Abstract] [Full Text] [Related]

  • 6. Prediction of interactions between viral and host proteins using supervised machine learning methods.
    Barman RK, Saha S, Das S.
    PLoS One; 2014 Mar 01; 9(11):e112034. PubMed ID: 25375323
    [Abstract] [Full Text] [Related]

  • 7. Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions.
    Xing C, Dunson DB.
    PLoS Comput Biol; 2011 Jul 01; 7(7):e1002110. PubMed ID: 21829334
    [Abstract] [Full Text] [Related]

  • 8. Probabilistic prediction and ranking of human protein-protein interactions.
    Scott MS, Barton GJ.
    BMC Bioinformatics; 2007 Jul 05; 8():239. PubMed ID: 17615067
    [Abstract] [Full Text] [Related]

  • 9. A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays.
    Demichelis F, Magni P, Piergiorgi P, Rubin MA, Bellazzi R.
    BMC Bioinformatics; 2006 Nov 24; 7():514. PubMed ID: 17125514
    [Abstract] [Full Text] [Related]

  • 10. Amino-acid residue association models for large scale protein-protein interaction prediction.
    Rao R, Tun K, Lakshminarayanan S, Dhar PK.
    In Silico Biol; 2009 Nov 24; 9(4):179-94. PubMed ID: 20109148
    [Abstract] [Full Text] [Related]

  • 11. Continuous time Bayesian network classifiers.
    Stella F, Amer Y.
    J Biomed Inform; 2012 Dec 24; 45(6):1108-19. PubMed ID: 22846170
    [Abstract] [Full Text] [Related]

  • 12. Bayesian methods for predicting interacting protein pairs using domain information.
    Kim I, Liu Y, Zhao H.
    Biometrics; 2007 Sep 24; 63(3):824-33. PubMed ID: 17825014
    [Abstract] [Full Text] [Related]

  • 13. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A, Goliaei B, Zahiri J, Ebrahimpour R.
    Mol Biosyst; 2014 Dec 24; 10(12):3147-54. PubMed ID: 25230581
    [Abstract] [Full Text] [Related]

  • 14. A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks.
    Browne F, Wang H, Zheng H, Azuaje F.
    Comput Biol Med; 2010 Mar 24; 40(3):306-17. PubMed ID: 20138613
    [Abstract] [Full Text] [Related]

  • 15. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification.
    Urquiza JM, Rojas I, Pomares H, Herrera J, Florido JP, Valenzuela O, Cepero M.
    Comput Biol Med; 2012 Jun 24; 42(6):639-50. PubMed ID: 22575173
    [Abstract] [Full Text] [Related]

  • 16. Understanding protein-protein interactions using local structural features.
    Planas-Iglesias J, Bonet J, García-García J, Marín-López MA, Feliu E, Oliva B.
    J Mol Biol; 2013 Apr 12; 425(7):1210-24. PubMed ID: 23353828
    [Abstract] [Full Text] [Related]

  • 17. Fuzzy Naive Bayesian for constructing regulated network with weights.
    Zhou XY, Tian XW, Lim JS.
    Biomed Mater Eng; 2015 Apr 12; 26 Suppl 1():S1757-62. PubMed ID: 26405944
    [Abstract] [Full Text] [Related]

  • 18. Probabilistic prediction of protein-protein interactions from the protein sequences.
    Chinnasamy A, Mittal A, Sung WK.
    Comput Biol Med; 2006 Oct 12; 36(10):1143-54. PubMed ID: 16253222
    [Abstract] [Full Text] [Related]

  • 19. A Naive Bayes classifier for protein function prediction.
    Kohonen J, Talikota S, Corander J, Auvinen P, Arjas E.
    In Silico Biol; 2009 Oct 12; 9(1-2):23-34. PubMed ID: 19537159
    [Abstract] [Full Text] [Related]

  • 20. Selection of human embryos for transfer by Bayesian classifiers.
    Morales DA, Bengoetxea E, Larrañaga P.
    Comput Biol Med; 2008 Oct 12; 38(11-12):1177-86. PubMed ID: 18951123
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.