These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 23116544

  • 1. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging.
    Chen WY, Chen HC, Yang YS, Huang CJ, Chan HW, Hu WP.
    Biosens Bioelectron; 2013 Mar 15; 41():795-801. PubMed ID: 23116544
    [Abstract] [Full Text] [Related]

  • 2. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique.
    Ananthanawat C, Vilaivan T, Hoven VP, Su X.
    Biosens Bioelectron; 2010 Jan 15; 25(5):1064-9. PubMed ID: 19864125
    [Abstract] [Full Text] [Related]

  • 3. Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor.
    Wenga G, Jacques E, Salaün AC, Rogel R, Pichon L, Geneste F.
    Biosens Bioelectron; 2013 Feb 15; 40(1):141-6. PubMed ID: 22841443
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA.
    Lin CH, Hung CH, Hsiao CY, Lin HC, Ko FH, Yang YS.
    Biosens Bioelectron; 2009 Jun 15; 24(10):3019-24. PubMed ID: 19362813
    [Abstract] [Full Text] [Related]

  • 7. Sensitive electrical detection of human prion proteins using field effect transistor biosensor with dual-ligand binding amplification.
    Wustoni S, Hideshima S, Kuroiwa S, Nakanishi T, Hashimoto M, Mori Y, Osaka T.
    Biosens Bioelectron; 2015 May 15; 67():256-62. PubMed ID: 25175745
    [Abstract] [Full Text] [Related]

  • 8. DNA hybridization sensor based on pentacene thin film transistor.
    Kim JM, Jha SK, Chand R, Lee DH, Kim YS.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2264-9. PubMed ID: 20952180
    [Abstract] [Full Text] [Related]

  • 9. Pushing the detection limits: the evanescent field in surface plasmon resonance and analyte-induced folding observation of long human telomeric repeats.
    Schlachter C, Lisdat F, Frohme M, Erdmann VA, Konthur Z, Lehrach H, Glökler J.
    Biosens Bioelectron; 2012 Jan 15; 31(1):571-4. PubMed ID: 22152989
    [Abstract] [Full Text] [Related]

  • 10. Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability.
    Kim JY, Choi K, Moon DI, Ahn JH, Park TJ, Lee SY, Choi YK.
    Biosens Bioelectron; 2013 Mar 15; 41():867-70. PubMed ID: 22985673
    [Abstract] [Full Text] [Related]

  • 11. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization.
    Malic L, Veres T, Tabrizian M.
    Biosens Bioelectron; 2009 Mar 15; 24(7):2218-24. PubMed ID: 19136248
    [Abstract] [Full Text] [Related]

  • 12. An FET-type charge sensor for highly sensitive detection of DNA sequence.
    Kim DS, Jeong YT, Park HJ, Shin JK, Choi P, Lee JH, Lim G.
    Biosens Bioelectron; 2004 Jul 30; 20(1):69-74. PubMed ID: 15142578
    [Abstract] [Full Text] [Related]

  • 13. Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement.
    Jayant K, Auluck K, Rodriguez S, Cao Y, Kan EC.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May 30; 89(5):052817. PubMed ID: 25353854
    [Abstract] [Full Text] [Related]

  • 14. Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach.
    Ermini ML, Mariani S, Scarano S, Minunni M.
    Biosens Bioelectron; 2013 Feb 15; 40(1):193-9. PubMed ID: 22857906
    [Abstract] [Full Text] [Related]

  • 15. Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing.
    Schmid JH, Sinclair W, García J, Janz S, Lapointe J, Poitras D, Li Y, Mischki T, Lopinski G, Cheben P, Delâge A, Densmore A, Waldron P, Xu DX.
    Opt Express; 2009 Sep 28; 17(20):18371-80. PubMed ID: 19907628
    [Abstract] [Full Text] [Related]

  • 16. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens.
    Parab HJ, Jung C, Lee JH, Park HG.
    Biosens Bioelectron; 2010 Oct 15; 26(2):667-73. PubMed ID: 20675117
    [Abstract] [Full Text] [Related]

  • 17. Monitoring extracellular K+ flux with a valinomycin-coated silicon nanowire field-effect transistor.
    Chang KS, Sun CJ, Chiang PL, Chou AC, Lin MC, Liang C, Hung HH, Yeh YH, Chen CD, Pan CY, Chen YT.
    Biosens Bioelectron; 2012 Jan 15; 31(1):137-43. PubMed ID: 22036669
    [Abstract] [Full Text] [Related]

  • 18. Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor.
    Milkani E, Morais S, Lambert CR, McGimpsey WG.
    Biosens Bioelectron; 2010 Jan 15; 25(5):1217-20. PubMed ID: 19819685
    [Abstract] [Full Text] [Related]

  • 19. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection.
    Tsai CC, Chiang PL, Sun CJ, Lin TW, Tsai MH, Chang YC, Chen YT.
    Nanotechnology; 2011 Apr 01; 22(13):135503. PubMed ID: 21343647
    [Abstract] [Full Text] [Related]

  • 20. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor.
    Kim JY, Ahn JH, Moon DI, Park TJ, Lee SY, Choi YK.
    Biosens Bioelectron; 2014 May 15; 55():162-7. PubMed ID: 24374298
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.