These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


247 related items for PubMed ID: 2311915

  • 1. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P, Ponec J, Lichardus B.
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [Abstract] [Full Text] [Related]

  • 2. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J, Bakos P, Lichardus B.
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [Abstract] [Full Text] [Related]

  • 3. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P, Ponec J, Lichardus B.
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [Abstract] [Full Text] [Related]

  • 4. Stimulation of the sodium transport across the frog skin by three N-terminally extended arginine-vasopressins.
    Ponec J, Bakos P, Lichardus B, Alexandrová M, Lammek B, Rekowski P, Kupryszewski G.
    Gen Physiol Biophys; 1990 Aug; 9(4):403-9. PubMed ID: 2272488
    [Abstract] [Full Text] [Related]

  • 5. Influence of salmon melanin concentrating hormone on vasopressin analogue (dDAVP) activity and sodium transport in frog skin.
    Smriga M, Bakos P, Jezová D.
    Gen Physiol Biophys; 1994 Oct; 13(5):413-24. PubMed ID: 7797049
    [Abstract] [Full Text] [Related]

  • 6. Suppression of natriferic activity of the vasopressin molecule by modifications in positions 1, 2 and 4.
    Bakos P, Ponec J, Alexandrová M, Lichardus B, Lammek B, Rekowski P, Kupryszewski G.
    Gen Physiol Biophys; 1990 Dec; 9(6):605-13. PubMed ID: 2079200
    [Abstract] [Full Text] [Related]

  • 7. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS, Peterson-Yantorno K, Civan MM.
    Biol Cell; 1989 Dec; 66(1-2):183-90. PubMed ID: 2804459
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Electrical rectification of the sodium flux across the apical barrier of frog skin epithelium.
    Helman SI.
    Soc Gen Physiol Ser; 1981 Dec; 36():15-30. PubMed ID: 6974403
    [No Abstract] [Full Text] [Related]

  • 10. Actions of antidiuretic hormone analogues on intact and nystatin-permeabilized frog skins.
    Jared SR, Rao JP, Subramani S.
    Exp Physiol; 2009 Dec; 94(12):1174-84. PubMed ID: 19666695
    [Abstract] [Full Text] [Related]

  • 11. [The role of protein kinase C in Na+ transport regulation in the skin of adult frogs and tadpoles of Rana temporaria].
    Krutetskaia ZI, Lebedev OE, Pashina AV.
    Tsitologiia; 2003 Dec; 45(6):590-5. PubMed ID: 14521090
    [Abstract] [Full Text] [Related]

  • 12. [Opposite actions of different doses of arginine-vasotocin and 1-deamino-arginine-vasotocin on sodium ion transport in skin of the frog Rana temporaria].
    Bogolepova AE.
    Zh Evol Biokhim Fiziol; 2011 Dec; 47(1):49-53. PubMed ID: 21469341
    [Abstract] [Full Text] [Related]

  • 13. [Co2+ activation and D-600 inhibition of sodium transport across the apical membrane of skin epithelial cells in the frog].
    Natochin IuV.
    Dokl Akad Nauk SSSR; 1985 Dec; 281(5):1273-6. PubMed ID: 2408840
    [No Abstract] [Full Text] [Related]

  • 14. Interactions of TPA and insulin on Na+ transport across frog skin.
    Civan MM, Peterson-Yantorno K, George K, O'Brien TG.
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943
    [Abstract] [Full Text] [Related]

  • 15. Temperature dependence of transcellular and intracellular parameters of frog skin.
    Dinno MA, Nagel W.
    Prog Clin Biol Res; 1988 Mar; 258():103-20. PubMed ID: 2454480
    [Abstract] [Full Text] [Related]

  • 16. Vasopressin stimulates Cl- transport in ascending thin limb of Henle's loop in hamster.
    Takahashi N, Kondo Y, Ito O, Igarashi Y, Omata K, Abe K.
    J Clin Invest; 1995 Apr; 95(4):1623-7. PubMed ID: 7706469
    [Abstract] [Full Text] [Related]

  • 17. Electrophysiological study of luminal and basolateral vasopressin in rabbit cortical collecting duct.
    Naruse M, Yoshitomi K, Hanaoka K, Imai M, Kurokawa K.
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F20-9. PubMed ID: 7840244
    [Abstract] [Full Text] [Related]

  • 18. Antibiotics as tools for studying the electrical properties of tight epithelia.
    Wills NK.
    Fed Proc; 1981 Jun; 40(8):2202-5. PubMed ID: 6165622
    [Abstract] [Full Text] [Related]

  • 19. Micro-electrode studies on the effects of exogenous cyclic adenosine monophosphate on active sodium transport in frog skin.
    Els WJ, Mahlangu AF.
    J Physiol; 1987 Jul; 388():547-63. PubMed ID: 2821244
    [Abstract] [Full Text] [Related]

  • 20. Effects of arginine-8-vasopressin and 1-deamino-8-D-arginine-vasopressin on ACTH secretion in rats.
    László FA, Janáky T, Julesz J, Kárteszi M, Makara GB, Stark E.
    Endocrinol Exp; 1983 Jun; 17(2):133-6. PubMed ID: 6309504
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.