These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 23123219
41. Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Johannesen PT, Buzo BC, Lopez-Poveda EA. Hear Res; 2019 Mar 15; 374():35-48. PubMed ID: 30710791 [Abstract] [Full Text] [Related]
42. Derived-band auditory brainstem responses: cochlear contributions determined by narrowband maskers. Stapells DR, Fok MR. Int J Audiol; 2024 Aug 15; 63(8):587-595. PubMed ID: 37381689 [Abstract] [Full Text] [Related]
43. Simultaneous masking additivity for short Gaussian-shaped tones: spectral effects. Laback B, Necciari T, Balazs P, Savel S, Ystad S. J Acoust Soc Am; 2013 Aug 15; 134(2):1160-71. PubMed ID: 23927115 [Abstract] [Full Text] [Related]
44. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies. Don M, Ponton CW, Eggermont JJ, Kwong B. J Acoust Soc Am; 1998 Oct 15; 104(4):2280-9. PubMed ID: 10491692 [Abstract] [Full Text] [Related]
45. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects. Zhang M. Hear Res; 2014 Jul 15; 313():9-17. PubMed ID: 24793117 [Abstract] [Full Text] [Related]
46. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Pérez-González P, Johannesen PT, Lopez-Poveda EA. Trends Hear; 2014 Dec 21; 19():. PubMed ID: 25534365 [Abstract] [Full Text] [Related]
48. Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing. Wojtczak M, Oxenham AJ. J Acoust Soc Am; 2010 Jul 21; 128(1):247-56. PubMed ID: 20649220 [Abstract] [Full Text] [Related]
54. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hauser SN, Burton JA, Mercer ET, Ramachandran R. Hear Res; 2018 Jan 21; 357():33-45. PubMed ID: 29175767 [Abstract] [Full Text] [Related]
55. The effect of broadband noise on the human brain-stem auditory evoked response. IV. Additivity of forward-masking and rate-induced wave V latency shifts. Burkard R, Hecox KE. J Acoust Soc Am; 1987 Apr 21; 81(4):1064-72. PubMed ID: 3571722 [Abstract] [Full Text] [Related]
56. Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. Moore BC, Vickers DA, Plack CJ, Oxenham AJ. J Acoust Soc Am; 1999 Nov 21; 106(5):2761-78. PubMed ID: 10573892 [Abstract] [Full Text] [Related]
58. The effect of broadband noise on the human brainstem auditory evoked response. II. Frequency specificity. Burkard R, Hecox K. J Acoust Soc Am; 1983 Oct 21; 74(4):1214-23. PubMed ID: 6643844 [Abstract] [Full Text] [Related]
59. Stimulation of residual hearing in the cat by pulsatile electrical stimulation of the cochlea. McAnally KI, Clark GM. Acta Otolaryngol; 1994 Jul 21; 114(4):366-72. PubMed ID: 7976307 [Abstract] [Full Text] [Related]