These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 23124761
1. Identification of chaperones in freeze tolerance in Saccharomyces cerevisiae. Naicker MC, Seul Jo I, Im H. J Microbiol; 2012 Oct; 50(5):882-7. PubMed ID: 23124761 [Abstract] [Full Text] [Related]
2. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D, Sekiguchi H, Sugimoto Y, Nagasawa A, Kida N, Takagi H. Appl Environ Microbiol; 2018 Jun 15; 84(12):. PubMed ID: 29625985 [Abstract] [Full Text] [Related]
3. Molecular Chaperones Accelerate the Evolution of Their Protein Clients in Yeast. Alvarez-Ponce D, Aguilar-Rodríguez J, Fares MA. Genome Biol Evol; 2019 Aug 01; 11(8):2360-2375. PubMed ID: 31297528 [Abstract] [Full Text] [Related]
4. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Ando A, Nakamura T, Murata Y, Takagi H, Shima J. FEMS Yeast Res; 2007 Mar 01; 7(2):244-53. PubMed ID: 16989656 [Abstract] [Full Text] [Related]
5. Synthetic lethality between toxic amino acids, RTG-target genes and chaperones in Saccharomyces cerevisiae. Druseikis ME, Covo S. Yeast; 2024 Sep 01; 41(9):549-559. PubMed ID: 39078098 [Abstract] [Full Text] [Related]
6. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Tulha J, Lima A, Lucas C, Ferreira C. Microb Cell Fact; 2010 Nov 03; 9():82. PubMed ID: 21047428 [Abstract] [Full Text] [Related]
7. Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells. Dang NX, Hincha DK. Cryobiology; 2011 Jun 03; 62(3):188-93. PubMed ID: 21420397 [Abstract] [Full Text] [Related]
8. Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae. Valaviciute M, Norkiene M, Goda K, Slibinskas R, Gedvilaite A. Arch Virol; 2016 Jul 03; 161(7):1807-19. PubMed ID: 27038828 [Abstract] [Full Text] [Related]
9. The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae. Zhang H, Hu B, Ji Y, Kato A, Song Y. Cell Mol Biol Lett; 2008 Jul 03; 13(4):621-31. PubMed ID: 18661113 [Abstract] [Full Text] [Related]
10. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Park JI, Grant CM, Attfield PV, Dawes IW. Appl Environ Microbiol; 1997 Oct 03; 63(10):3818-24. PubMed ID: 9327544 [Abstract] [Full Text] [Related]
11. Alleviation of deleterious effects of protein mutation through inactivation of molecular chaperones. Tomala K, Korona R. Mol Genet Genomics; 2008 Nov 03; 280(5):409-17. PubMed ID: 18762987 [Abstract] [Full Text] [Related]
12. Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. Sichting M, Mokranjac D, Azem A, Neupert W, Hell K. EMBO J; 2005 Mar 09; 24(5):1046-56. PubMed ID: 15719019 [Abstract] [Full Text] [Related]
13. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Tanghe A, Van Dijck P, Colavizza D, Thevelein JM. Appl Environ Microbiol; 2004 Jun 09; 70(6):3377-82. PubMed ID: 15184134 [Abstract] [Full Text] [Related]
14. Regulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult. Seppä L, Makarow M. Eukaryot Cell; 2005 Dec 09; 4(12):2008-16. PubMed ID: 16339719 [Abstract] [Full Text] [Related]
15. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A, Gibney PA. J Appl Microbiol; 2022 Oct 09; 133(4):2390-2402. PubMed ID: 35801661 [Abstract] [Full Text] [Related]
16. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Takahashi S, Ando A, Takagi H, Shima J. Appl Environ Microbiol; 2009 Nov 09; 75(21):6706-11. PubMed ID: 19749072 [Abstract] [Full Text] [Related]
17. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. Matsumoto R, Akama K, Rakwal R, Iwahashi H. BMC Genomics; 2005 Oct 07; 6():141. PubMed ID: 16209719 [Abstract] [Full Text] [Related]
18. Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL. Mol Cell; 2004 Mar 26; 13(6):771-81. PubMed ID: 15053871 [Abstract] [Full Text] [Related]
19. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S, Thevelein JM. Appl Environ Microbiol; 2002 Dec 26; 68(12):5981-9. PubMed ID: 12450819 [Abstract] [Full Text] [Related]
20. Functional Dissection of the Nascent Polypeptide-Associated Complex in Saccharomyces cerevisiae. Ott AK, Locher L, Koch M, Deuerling E. PLoS One; 2015 Dec 26; 10(11):e0143457. PubMed ID: 26618777 [Abstract] [Full Text] [Related] Page: [Next] [New Search]