These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 23128424

  • 1. GPU-based fast Monte Carlo dose calculation for proton therapy.
    Jia X, Schümann J, Paganetti H, Jiang SB.
    Phys Med Biol; 2012 Dec 07; 57(23):7783-97. PubMed ID: 23128424
    [Abstract] [Full Text] [Related]

  • 2. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study.
    Giantsoudi D, Schuemann J, Jia X, Dowdell S, Jiang S, Paganetti H.
    Phys Med Biol; 2015 Mar 21; 60(6):2257-69. PubMed ID: 25715661
    [Abstract] [Full Text] [Related]

  • 3. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.
    Qin N, Pinto M, Tian Z, Dedes G, Pompos A, Jiang SB, Parodi K, Jia X.
    Phys Med Biol; 2017 May 07; 62(9):3682-3699. PubMed ID: 28140352
    [Abstract] [Full Text] [Related]

  • 4. A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy.
    Li S, Cheng B, Wang Y, Pei X, Xu XG.
    J Appl Clin Med Phys; 2024 Jan 07; 25(1):e14208. PubMed ID: 37987549
    [Abstract] [Full Text] [Related]

  • 5. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation.
    Shan J, Feng H, Morales DH, Patel SH, Wong WW, Fatyga M, Bues M, Schild SE, Foote RL, Liu W.
    Med Phys; 2022 Oct 07; 49(10):6666-6683. PubMed ID: 35960865
    [Abstract] [Full Text] [Related]

  • 6. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H, Ma J, Beltran C.
    Med Phys; 2015 Jun 07; 42(6):2967-78. PubMed ID: 26127050
    [Abstract] [Full Text] [Related]

  • 7. Recent developments and comprehensive evaluations of a GPU-based Monte Carlo package for proton therapy.
    Qin N, Botas P, Giantsoudi D, Schuemann J, Tian Z, Jiang SB, Paganetti H, Jia X.
    Phys Med Biol; 2016 Oct 21; 61(20):7347-7362. PubMed ID: 27694712
    [Abstract] [Full Text] [Related]

  • 8. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure.
    Lee H, Shin J, Verburg JM, Bobić M, Winey B, Schuemann J, Paganetti H.
    Phys Med Biol; 2022 Aug 30; 67(17):. PubMed ID: 35926482
    [Abstract] [Full Text] [Related]

  • 9. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L, Yang Y, Bednarz B, Sterpin E, Du X, Liu T, Ji W, Xu XG.
    Med Phys; 2014 Jul 30; 41(7):071709. PubMed ID: 24989378
    [Abstract] [Full Text] [Related]

  • 10. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy.
    Li Y, Tian Z, Song T, Wu Z, Liu Y, Jiang S, Jia X.
    Phys Med Biol; 2017 Jan 07; 62(1):289-305. PubMed ID: 27991456
    [Abstract] [Full Text] [Related]

  • 11. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures.
    Souris K, Lee JA, Sterpin E.
    Med Phys; 2016 Apr 07; 43(4):1700. PubMed ID: 27036568
    [Abstract] [Full Text] [Related]

  • 12. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z, Shi F, Folkerts M, Qin N, Jiang SB, Jia X.
    Phys Med Biol; 2015 Oct 07; 60(19):7419-35. PubMed ID: 26352012
    [Abstract] [Full Text] [Related]

  • 13. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
    Wulff J, Baumann KS, Verbeek N, Bäumer C, Timmermann B, Zink K.
    Phys Med Biol; 2018 Jun 07; 63(11):115013. PubMed ID: 29737969
    [Abstract] [Full Text] [Related]

  • 14. Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy.
    Fracchiolla F, Engwall E, Janson M, Tamm F, Lorentini S, Fellin F, Bertolini M, Algranati C, Righetto R, Farace P, Amichetti M, Schwarz M.
    Phys Med; 2021 Aug 07; 88():226-234. PubMed ID: 34311160
    [Abstract] [Full Text] [Related]

  • 15. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X, Gu X, Graves YJ, Folkerts M, Jiang SB.
    Phys Med Biol; 2011 Nov 21; 56(22):7017-31. PubMed ID: 22016026
    [Abstract] [Full Text] [Related]

  • 16. Macro Monte Carlo for dose calculation of proton beams.
    Fix MK, Frei D, Volken W, Born EJ, Aebersold DM, Manser P.
    Phys Med Biol; 2013 Apr 07; 58(7):2027-44. PubMed ID: 23458969
    [Abstract] [Full Text] [Related]

  • 17. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W, Kolditz D, Beister M, Bohle R, Kalender WA.
    Med Phys; 2012 Jun 07; 39(6):2985-96. PubMed ID: 22755683
    [Abstract] [Full Text] [Related]

  • 18. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.
    Kalantzis G, Tachibana H.
    Comput Methods Programs Biomed; 2014 Jun 07; 113(1):116-25. PubMed ID: 24113420
    [Abstract] [Full Text] [Related]

  • 19. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations.
    Yepes PP, Mirkovic D, Taddei PJ.
    Phys Med Biol; 2010 Dec 07; 55(23):7107-20. PubMed ID: 21076192
    [Abstract] [Full Text] [Related]

  • 20. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy.
    Schiavi A, Senzacqua M, Pioli S, Mairani A, Magro G, Molinelli S, Ciocca M, Battistoni G, Patera V.
    Phys Med Biol; 2017 Sep 05; 62(18):7482-7504. PubMed ID: 28873069
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.