These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 23130825
1. Catalytic mechanism and product specificity of oxidosqualene-lanosterol cyclase: a QM/MM study. Tian BX, Eriksson LA. J Phys Chem B; 2012 Nov 29; 116(47):13857-62. PubMed ID: 23130825 [Abstract] [Full Text] [Related]
2. Protein plasticity: a single amino acid substitution in the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase generates protosta-13(17),24-dien-3beta-ol, a rearrangement product. Wu TK, Wen HY, Chang CH, Liu YT. Org Lett; 2008 Jun 19; 10(12):2529-32. PubMed ID: 18494476 [Abstract] [Full Text] [Related]
3. The cysteine 703 to isoleucine or histidine mutation of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae generates an iridal-type triterpenoid. Chang CH, Chen YC, Tseng SW, Liu YT, Wen HY, Li WH, Huang CY, Ko CY, Wang TT, Wu TK. Biochimie; 2012 Nov 19; 94(11):2376-81. PubMed ID: 22732192 [Abstract] [Full Text] [Related]
4. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions. Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW. Org Lett; 2006 Mar 30; 8(7):1319-22. PubMed ID: 16562881 [Abstract] [Full Text] [Related]
5. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related]
6. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. Wu TK, Liu YT, Chang CH, Yu MT, Wang HJ. J Am Chem Soc; 2006 May 17; 128(19):6414-9. PubMed ID: 16683806 [Abstract] [Full Text] [Related]
7. Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I. Biochem Biophys Res Commun; 2010 Jan 01; 391(1):899-902. PubMed ID: 19951700 [Abstract] [Full Text] [Related]
8. Biosynthetic Mechanism of Lanosterol: Cyclization. Chen N, Wang S, Smentek L, Hess BA, Wu R. Angew Chem Int Ed Engl; 2015 Jul 20; 54(30):8693-6. PubMed ID: 26069216 [Abstract] [Full Text] [Related]
9. Protein engineering of oxidosqualene-lanosterol cyclase into triterpene monocyclase. Chang CH, Wen HY, Shie WS, Lu CT, Li ME, Liu YT, Li WH, Wu TK. Org Biomol Chem; 2013 Jul 07; 11(25):4214-9. PubMed ID: 23680980 [Abstract] [Full Text] [Related]
10. Lord of the rings--the mechanism for oxidosqualene:lanosterol cyclase becomes crystal clear. Huff MW, Telford DE. Trends Pharmacol Sci; 2005 Jul 07; 26(7):335-40. PubMed ID: 15951028 [Abstract] [Full Text] [Related]
11. Mechanistic insights into oxidosqualene cyclizations through homology modeling. Schulz-Gasch T, Stahl M. J Comput Chem; 2003 Apr 30; 24(6):741-53. PubMed ID: 12666166 [Abstract] [Full Text] [Related]
12. Mutation of isoleucine 705 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae affects lanosterol's C/D-ring cyclization and 17α/β-exocyclic side chain stereochemistry. Wu TK, Chang YC, Liu YT, Chang CH, Wen HY, Li WH, Shie WS. Org Biomol Chem; 2011 Feb 21; 9(4):1092-7. PubMed ID: 21157613 [Abstract] [Full Text] [Related]
13. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions. Wu TK, Liu YT, Chiu FH, Chang CH. Org Lett; 2006 Oct 12; 8(21):4691-4. PubMed ID: 17020279 [Abstract] [Full Text] [Related]
14. Control of the 1,2-rearrangement process by oxidosqualene cyclases during triterpene biosynthesis. Takase S, Saga Y, Kurihara N, Naraki S, Kuze K, Nakata G, Araki T, Kushiro T. Org Biomol Chem; 2015 Jul 14; 13(26):7331-6. PubMed ID: 26058429 [Abstract] [Full Text] [Related]
15. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Lodeiro S, Schulz-Gasch T, Matsuda SP. J Am Chem Soc; 2005 Oct 19; 127(41):14132-3. PubMed ID: 16218577 [Abstract] [Full Text] [Related]
16. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. Dang T, Prestwich GD. Chem Biol; 2000 Aug 19; 7(8):643-9. PubMed ID: 11048954 [Abstract] [Full Text] [Related]
17. Enzymatic formation of multiple triterpenes by mutation of tyrosine 510 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. Wu TK, Chang CH. Chembiochem; 2004 Dec 03; 5(12):1712-5. PubMed ID: 15508118 [No Abstract] [Full Text] [Related]
18. Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis. Wu TK, Griffin JH. Biochemistry; 2002 Jul 02; 41(26):8238-44. PubMed ID: 12081472 [Abstract] [Full Text] [Related]
19. Histidine residue at position 234 of oxidosqualene-lanosterol cyclase from saccharomyces cerevisiae simultaneously influences cyclization, rearrangement, and deprotonation reactions. Wu TK, Liu YT, Chang CH. Chembiochem; 2005 Jul 02; 6(7):1177-81. PubMed ID: 15915534 [No Abstract] [Full Text] [Related]
20. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase. Liu YT, Hu TC, Chang CH, Shie WS, Wu TK. Org Lett; 2012 Oct 19; 14(20):5222-5. PubMed ID: 23043506 [Abstract] [Full Text] [Related] Page: [Next] [New Search]