These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


677 related items for PubMed ID: 23131709

  • 21. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 22. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise.
    Sidhu SK, Weavil JC, Mangum TS, Jessop JE, Richardson RS, Morgan DE, Amann M.
    Clin Neurophysiol; 2017 Jan 09; 128(1):44-55. PubMed ID: 27866119
    [Abstract] [Full Text] [Related]

  • 23. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM, Cafarelli E.
    J Appl Physiol (1985); 2006 Jun 09; 100(6):1757-64. PubMed ID: 16424071
    [Abstract] [Full Text] [Related]

  • 24. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A, Matsunaga K, Tanaka N, Rothwell JC.
    Clin Neurophysiol; 2006 Apr 09; 117(4):864-70. PubMed ID: 16495147
    [Abstract] [Full Text] [Related]

  • 25. Corticospinal contributions to lower limb muscle activity during cycling in humans.
    Sidhu SK, Hoffman BW, Cresswell AG, Carroll TJ.
    J Neurophysiol; 2012 Jan 09; 107(1):306-14. PubMed ID: 22013236
    [Abstract] [Full Text] [Related]

  • 26. Fatigue diminishes motoneuronal excitability during cycling exercise.
    Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M.
    J Neurophysiol; 2016 Oct 01; 116(4):1743-1751. PubMed ID: 27440242
    [Abstract] [Full Text] [Related]

  • 27. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL.
    Exp Brain Res; 2016 Sep 01; 234(9):2541-51. PubMed ID: 27165508
    [Abstract] [Full Text] [Related]

  • 28. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions.
    Stein RB, Everaert DG, Roy FD, Chong S, Soleimani M.
    J Clin Neurophysiol; 2013 Feb 01; 30(1):66-78. PubMed ID: 23377445
    [Abstract] [Full Text] [Related]

  • 29. An initial transient-state and reliable measures of corticospinal excitability in TMS studies.
    Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA.
    Clin Neurophysiol; 2009 May 01; 120(5):987-93. PubMed ID: 19359215
    [Abstract] [Full Text] [Related]

  • 30. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D, Raj A, Button DC, Power KE.
    J Neurophysiol; 2014 Sep 01; 112(5):1142-51. PubMed ID: 24899677
    [Abstract] [Full Text] [Related]

  • 31. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB, Tuel SM, Sherwood AM, Stokić DS, Dimitrijević MR.
    Exp Brain Res; 1995 Sep 01; 105(2):276-82. PubMed ID: 7498380
    [Abstract] [Full Text] [Related]

  • 32. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G, Taylor JL, Butler JE, Martin PG, Gorman RB, Gandevia SC.
    J Appl Physiol (1985); 2007 May 01; 102(5):1756-66. PubMed ID: 17218428
    [Abstract] [Full Text] [Related]

  • 33. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles.
    Mileva KN, Sumners DP, Bowtell JL.
    Eur J Appl Physiol; 2012 Dec 01; 112(12):3959-70. PubMed ID: 22434254
    [Abstract] [Full Text] [Related]

  • 34. Non-local muscle fatigue is mediated at spinal and supraspinal levels.
    Amiri E, Gharakhanlou R, Rajabi H, Giboin LS, Rezasoltani Z, Azma K.
    Exp Brain Res; 2022 Jun 01; 240(6):1887-1897. PubMed ID: 35460346
    [Abstract] [Full Text] [Related]

  • 35. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men.
    Temesi J, Vernillo G, Martin M, Krüger RL, McNeil CJ, Millet GY.
    Neuroscience; 2019 Dec 01; 422():88-98. PubMed ID: 31682821
    [Abstract] [Full Text] [Related]

  • 36. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW.
    Exp Brain Res; 2006 Apr 01; 170(2):191-8. PubMed ID: 16328285
    [Abstract] [Full Text] [Related]

  • 37. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis.
    Perretti A, Balbi P, Orefice G, Trojano L, Marcantonio L, Brescia-Morra V, Ascione S, Manganelli F, Conte G, Santoro L.
    Clin Neurophysiol; 2004 Sep 01; 115(9):2128-33. PubMed ID: 15294215
    [Abstract] [Full Text] [Related]

  • 38. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.
    McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL.
    J Physiol; 2011 Jul 15; 589(Pt 14):3533-44. PubMed ID: 21606110
    [Abstract] [Full Text] [Related]

  • 39. Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion.
    Sidhu SK, Cresswell AG, Carroll TJ.
    J Appl Physiol (1985); 2012 Aug 15; 113(3):401-9. PubMed ID: 22678968
    [Abstract] [Full Text] [Related]

  • 40. Evidence for a supraspinal contribution to human muscle fatigue.
    Taylor JL, Todd G, Gandevia SC.
    Clin Exp Pharmacol Physiol; 2006 Apr 15; 33(4):400-5. PubMed ID: 16620309
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 34.