These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 23142527
41. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M. Inorg Chem; 2009 Sep 21; 48(18):8771-83. PubMed ID: 19694480 [Abstract] [Full Text] [Related]
42. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD, Kappler U, Hanson GR, Bernhardt PV. Biochim Biophys Acta; 2011 Jan 21; 1807(1):108-18. PubMed ID: 20863809 [Abstract] [Full Text] [Related]
43. Roles of four iron centers in Paracoccus halodenitrificans nitric oxide reductase. Sakurai T, Sakurai N, Matsumoto H, Hirota S, Yamauchi O. Biochem Biophys Res Commun; 1998 Oct 09; 251(1):248-51. PubMed ID: 9790940 [Abstract] [Full Text] [Related]
45. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode. Klein AR, Silvester E, Hogan CF. Environ Sci Technol; 2014 Sep 16; 48(18):10835-42. PubMed ID: 25157830 [Abstract] [Full Text] [Related]
46. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase. Sun S, Li ZS, Chen SL. Dalton Trans; 2014 Jan 21; 43(3):973-81. PubMed ID: 24162174 [Abstract] [Full Text] [Related]
48. Direct hydride shift mechanism and stereoselectivity of P450nor confirmed by QM/MM calculations. Krámos B, Menyhárd DK, Oláh J. J Phys Chem B; 2012 Jan 19; 116(2):872-85. PubMed ID: 22148861 [Abstract] [Full Text] [Related]
49. Electrochemical and spectroscopic characteristics of cytochrome P450 55A3 and its interaction with nitric oxide. He Z, Deng H, Wang Q, Li Y, Liang X, Liu D, Wu Y. Int J Biol Macromol; 2021 Jan 15; 167():1406-1413. PubMed ID: 33202279 [Abstract] [Full Text] [Related]
51. From no-confidence to nitric oxide acknowledgement: a story of bacterial nitric-oxide reductase. Koutný M. Folia Microbiol (Praha); 2000 Jan 15; 45(3):197-203. PubMed ID: 11271799 [Abstract] [Full Text] [Related]
52. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Science; 2010 Dec 17; 330(6011):1666-70. PubMed ID: 21109633 [Abstract] [Full Text] [Related]
53. Substrate control of internal electron transfer in bacterial nitric-oxide reductase. Lachmann P, Huang Y, Reimann J, Flock U, Adelroth P. J Biol Chem; 2010 Aug 13; 285(33):25531-7. PubMed ID: 20547487 [Abstract] [Full Text] [Related]
54. The nitric oxide reductase mechanism of a flavo-diiron protein: identification of active-site intermediates and products. Caranto JD, Weitz A, Hendrich MP, Kurtz DM. J Am Chem Soc; 2014 Jun 04; 136(22):7981-92. PubMed ID: 24828196 [Abstract] [Full Text] [Related]
55. Studies of iron(II) and iron(III) complexes with fac-N2O, cis-N2O2 and N2O3 donor ligands: models for the 2-His 1-carboxylate motif of non-heme iron monooxygenases. Cappillino PJ, Miecznikowski JR, Tyler LA, Tarves PC, McNally JS, Lo W, Kasibhatla BS, Krzyaniak MD, McCracken J, Wang F, Armstrong WH, Caradonna JP. Dalton Trans; 2012 May 14; 41(18):5662-77. PubMed ID: 22434362 [Abstract] [Full Text] [Related]
57. A functional nitric oxide reductase model. Collman JP, Yang Y, Dey A, Decréau RA, Ghosh S, Ohta T, Solomon EI. Proc Natl Acad Sci U S A; 2008 Oct 14; 105(41):15660-5. PubMed ID: 18838684 [Abstract] [Full Text] [Related]