These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 23145611

  • 1. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP, van Dijk P, Manley GA.
    J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611
    [Abstract] [Full Text] [Related]

  • 2. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear.
    Vilfan A, Duke T.
    Biophys J; 2008 Nov 15; 95(10):4622-30. PubMed ID: 18689448
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA.
    Hear Res; 2006 Feb 15; 212(1-2):33-47. PubMed ID: 16307854
    [Abstract] [Full Text] [Related]

  • 5. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
    Manley GA.
    Hear Res; 2009 Sep 15; 255(1-2):58-66. PubMed ID: 19539017
    [Abstract] [Full Text] [Related]

  • 6. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?
    Wit HP, van Dijk P.
    J Acoust Soc Am; 2012 Aug 15; 132(2):918-26. PubMed ID: 22894214
    [Abstract] [Full Text] [Related]

  • 7. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics.
    Köppl C, Manley GA.
    Hear Res; 1993 Dec 15; 71(1-2):157-69. PubMed ID: 8113134
    [Abstract] [Full Text] [Related]

  • 8. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
    Bergevin C, Velenovsky DS, Bonine KE.
    Biophys J; 2010 Aug 09; 99(4):1064-72. PubMed ID: 20712989
    [Abstract] [Full Text] [Related]

  • 9. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C, Shera CA.
    J Acoust Soc Am; 2010 Apr 09; 127(4):2398-409. PubMed ID: 20370023
    [Abstract] [Full Text] [Related]

  • 10. Modeling the characteristics of spontaneous otoacoustic emissions in lizards.
    Wit HP, Manley GA, van Dijk P.
    Hear Res; 2020 Jan 09; 385():107840. PubMed ID: 31760263
    [Abstract] [Full Text] [Related]

  • 11. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.
    Cheatham MA, Goodyear RJ, Homma K, Legan PK, Korchagina J, Naskar S, Siegel JH, Dallos P, Zheng J, Richardson GP.
    J Neurosci; 2014 Jul 30; 34(31):10325-38. PubMed ID: 25080593
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear.
    Wit HP, Bell A.
    Audiol Neurootol; 2023 Jul 30; 28(3):183-193. PubMed ID: 36626887
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects.
    Cheatham MA.
    Hear Res; 2021 Feb 30; 400():108143. PubMed ID: 33340968
    [Abstract] [Full Text] [Related]

  • 17. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.
    Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J.
    Hear Res; 2012 Mar 30; 285(1-2):20-8. PubMed ID: 22509533
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane.
    Cheatham MA, Ahmad A, Zhou Y, Goodyear RJ, Dallos P, Richardson GP.
    J Assoc Res Otolaryngol; 2016 Apr 30; 17(2):81-8. PubMed ID: 26691158
    [Abstract] [Full Text] [Related]

  • 20. Evaluation of the frequency selectivity of contralateral acoustic stimulation on the active mechanisms of the organ of corti by analyzing the changes in the amplitude of transitory evoked otoacoustic emissions and distortion products.
    Ibargüen AM, Santaolalla Montoya F, del Rey AS, Fernandez JM.
    J Otolaryngol Head Neck Surg; 2008 Aug 30; 37(4):457-62. PubMed ID: 19128576
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.