These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 23150365
1. Analysis of photoreceptor degeneration in the zebrafish Danio rerio. Dill H, Linder B, Hirmer A, Fischer U. Methods Mol Biol; 2013; 935():127-37. PubMed ID: 23150365 [Abstract] [Full Text] [Related]
2. Gene Knockdown in Zebrafish (Danio rerio) as a Tool to Model Photoreceptor Diseases. Dill H, Fischer U. Methods Mol Biol; 2019; 1834():209-219. PubMed ID: 30324447 [Abstract] [Full Text] [Related]
3. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Linder B, Dill H, Hirmer A, Brocher J, Lee GP, Mathavan S, Bolz HJ, Winkler C, Laggerbauer B, Fischer U. Hum Mol Genet; 2011 Jan 15; 20(2):368-77. PubMed ID: 21051334 [Abstract] [Full Text] [Related]
4. Sirt1 involvement in rd10 mouse retinal degeneration. Jaliffa C, Ameqrane I, Dansault A, Leemput J, Vieira V, Lacassagne E, Provost A, Bigot K, Masson C, Menasche M, Abitbol M. Invest Ophthalmol Vis Sci; 2009 Aug 15; 50(8):3562-72. PubMed ID: 19407027 [Abstract] [Full Text] [Related]
5. Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology. Collery RF, Cederlund ML, Kennedy BN. Exp Eye Res; 2013 Mar 15; 108():120-8. PubMed ID: 23328348 [Abstract] [Full Text] [Related]
6. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Liu F, Chen J, Yu S, Raghupathy RK, Liu X, Qin Y, Li C, Huang M, Liao S, Wang J, Zou J, Shu X, Tang Z, Liu M. Hum Mol Genet; 2015 Aug 15; 24(16):4648-59. PubMed ID: 26034134 [Abstract] [Full Text] [Related]
7. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Guo C, Otani A, Oishi A, Kojima H, Makiyama Y, Nakagawa S, Yoshimura N. Exp Eye Res; 2012 Nov 15; 104():39-47. PubMed ID: 23022404 [Abstract] [Full Text] [Related]
8. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Nakamura K, Harada C, Okumura A, Namekata K, Mitamura Y, Yoshida K, Ohno S, Yoshida H, Harada T. Mol Vis; 2005 Dec 29; 11():1229-35. PubMed ID: 16402023 [Abstract] [Full Text] [Related]
9. FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Di Gioia SA, Letteboer SJ, Kostic C, Bandah-Rozenfeld D, Hetterschijt L, Sharon D, Arsenijevic Y, Roepman R, Rivolta C. Hum Mol Genet; 2012 Dec 01; 21(23):5174-84. PubMed ID: 22940612 [Abstract] [Full Text] [Related]
10. Concentric retinitis pigmentosa: clinicopathologic correlations. Milam AH, De Castro EB, Smith JE, Tang WX, John SK, Gorin MB, Stone EM, Aguirre GD, Jacobson SG. Exp Eye Res; 2001 Oct 01; 73(4):493-508. PubMed ID: 11825021 [Abstract] [Full Text] [Related]
11. Letter to the editor: Comments on retinal metabolic state in P23H and normal retinas. Winkler BS. Am J Physiol Cell Physiol; 2010 Jul 01; 299(1):C185; author reply C186-7. PubMed ID: 20554913 [No Abstract] [Full Text] [Related]
12. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Beltran WA, Hammond P, Acland GM, Aguirre GD. Invest Ophthalmol Vis Sci; 2006 Apr 01; 47(4):1669-81. PubMed ID: 16565408 [Abstract] [Full Text] [Related]
13. Retinitis Pigmentosa: over-expression of anti-ageing protein Klotho in degenerating photoreceptors. Farinelli P, Arango-Gonzalez B, Völkl J, Alesutan I, Lang F, Zrenner E, Paquet-Durand F, Ekström PA. J Neurochem; 2013 Dec 01; 127(6):868-79. PubMed ID: 23796581 [Abstract] [Full Text] [Related]
14. The synthetic progestin norgestrel acts to increase LIF levels in the rd10 mouse model of retinitis pigmentosa. Byrne AM, Roche SL, Ruiz-Lopez AM, Jackson AC, Cotter TG. Mol Vis; 2016 Dec 01; 22():264-74. PubMed ID: 27081297 [Abstract] [Full Text] [Related]
15. [Therapeutic strategies in RP (retinitis pigmentosa): light at the end of the tunnel?]. Abegg M, Hafezi F, Wenzel A, Grimm C, Remé CE. Klin Monbl Augenheilkd; 2000 Feb 01; 216(2):83-9. PubMed ID: 10730223 [Abstract] [Full Text] [Related]
16. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T. Ophthalmology; 2013 Jan 01; 120(1):e5-12. PubMed ID: 22986110 [Abstract] [Full Text] [Related]
17. Synergistic effect of Bcl-2 and BAG-1 on the prevention of photoreceptor cell death. Eversole-Cire P, Concepcion FA, Simon MI, Takayama S, Reed JC, Chen J. Invest Ophthalmol Vis Sci; 2000 Jun 01; 41(7):1953-61. PubMed ID: 10845622 [Abstract] [Full Text] [Related]
18. Modulated expression of secreted frizzled-related proteins in human retinal degeneration. Jones SE, Jomary C, Grist J, Stewart HJ, Neal MJ. Neuroreport; 2000 Dec 18; 11(18):3963-7. PubMed ID: 11192610 [Abstract] [Full Text] [Related]
19. A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8. Stanković D, Claudius AK, Schertel T, Bresser T, Uhlirova M. Dis Model Mech; 2020 Jun 26; 13(6):. PubMed ID: 32424050 [Abstract] [Full Text] [Related]
20. Tracing the progression of retinitis pigmentosa via photoreceptor interactions. Camacho ET, Wirkus S. J Theor Biol; 2013 Jan 21; 317():105-18. PubMed ID: 23063618 [Abstract] [Full Text] [Related] Page: [Next] [New Search]